编程环境:Anaconda中的notebook;
利用三层神经网络实现MNIST数据库(CSV格式)的手写字符识别;
并且计算出识别的准确率
2025/3/20 5:11:19 7KB 神经网络 Python 数字识别
1
车牌识别:运用到openCVmfcBP神经网络的知识,在这里你可以调用已经训练好的BP网络,或者自己来训练,对单个字符识别蛮高的(但字符数量不是很多呢)
2025/2/8 20:35:27 6.07MB 车牌识别 openCV mfc BP神经网络
1
2011版labview开发,需要安装VISION图像处理子模块,本程序为完全开源,用于图像处理领域,主要用于创建OCR字符识别库,并用于动态识别图像中的字符。
专业作品,欢迎交流沟通
2025/1/25 22:04:44 104KB LABVIEW 文字 识别
1
车牌识别的字符识别,可以通过上面的文件中训练样本来进行。
里面含有字母,数字,和汉字,都已近包含。
2025/1/4 22:36:37 25.77MB 识别
1
本项目是我用基于Opencv和C++实现的一整套车牌识别系统从定位、分割到字符识别的源代码,可直接运行使用,效果还不错。
2024/12/31 18:21:20 18KB 车牌定位 字符分割 车牌识别
1
针对纸币清分机对人民币编号自动识别,在处理速度和识别率方面的高标准要求,提出了一种基于模板匹配的人民币编号快速识别算法,该算法在图像预处理时,利用改进的滤波法去离散噪声;
在字符识别时,利用数字和字母的水平与竖直交点特征和轮廓对称特征以及加权特征,直接识别定位好的字符。
实验结果表明,该算法具有对硬件资源要求低、识别速度快等优点,可以满足纸币清分机的应用要求。
2024/12/16 15:13:16 204KB 人民币编号 图像识别 算法
1
通过使用matlab软件图像处理功能,对车牌图像进行图像预处理、边缘检测、车牌定位、车牌字符分割、车牌字符识别等5个基本处理,使用基于HSV颜色空间的车牌定位方法和基于模板匹配的字符识别算法,对所要求的汽车车牌进行信息提取,并得出最终结果。
2024/11/17 13:21:43 11.96MB 车牌识别 matlab 字符模板
1
基于卷积神经网络的车牌照字符
2024/11/13 16:18:09 297KB 卷积神经网络
1
tesseract库,能够在vs2013中运用,字符识别,其中包含了include、lib和dll
2024/11/10 14:53:06 12.91MB tesseract vs2013
1
Sciblog支持信息和代码此仓库包含支持我的博客的项目,其他信息和代码:。
您可以找到我在发表的所有帖子的列表。
笔记本项目:在这个项目中,我们解释什么是卷积以及如何使用带有MNIST字符识别数据集的MXNet深度学习库来计算CNN。
这里是。
:在本项目中,我们使用PyTorch解释迁移学习的基本方法(微调和冻结),并分析在哪种情况下更好地使用每种方法。
这里是。
:在这些笔记本中,我们展示了如何使用Char-CNN和VDCNN模型执行字符级卷积以进行情感分析。
这里是。
:在本笔记本中,我们展示了许多简单的技术来生成图像,文本和时间序列中的新数据。
这里是。
降:在本项目中,我们使用sklearn和CUDA展示t-SNE算法的示例。
我们使用CNN从图像生成高维特征,然后展示如何将其投影并可视化为二维空间。
这里是。
:在本笔记本中,我们使用GPU上的LightGBM(也可在CPU上)设计实时欺诈检测模型。
然后使用Flask和websockets通过API对模型进行操作。
这里是。
:在本笔记本中,我们演示如何创建图像分类API。
该系统与使用CNTK深度
1
共 74 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡