聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。
聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是多维空间中的一个点。
聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。
2025/4/23 8:31:55 5KB 聚类算法 人工智能
1
一篇著名的数据库数据检索论文,由加州伯克利大学的AntoninGuttman撰写。
论文索引:在计算机辅助设计跟空间数据应用中,为了能高效处理空间数据,数据库系统需要一个检索功能从而根据空间位置来迅速抓取数据。
但是,传统的检索方法不适合用于多维空间中的有限大小的数据对象。
在这篇论文中我们设计了一个叫做R-树的动态检索结构,这种设计满足了我们新的需求并且包含了搜索跟更新数据的算法。
通过一系列的测试我们发现这种数据结构非常高效并认为这种结构适合于当前的空间数据应用数据库系统。
2024/5/18 2:51:34 1.05MB 数据检索
1
空间谱估计是阵列信号处理中的一个重要研究方向,在雷达、通信、声呐等众多领域有极为广阔的应用前景。
本书深入、系统地论述了空间谱估计的理论、算法及一些理论方法之间的关系,总结了作者多年来的研究成果以及国际上这一领域的研究进展。
全书由14章组成,次要内容有空间谱估计的研究进展、信号源数估计、线性预测(LP)类算法、MUSIC类算法、子空间拟合类算法、旋转不变子空间(ESPRIT)类算法、子空间迭代与更新、特殊信号的空间谱估计、特殊阵列的空间谱估计、阵列误差校正方法、现代信号处理在空间谱估计中的应用及多维空间谱估计等。
本书是关于空间谱估计理论与算法的一部专著,可供从事雷达、通信、导航、声呐与电子对抗等领域的广大技术人员学习与参考,也可作为高等院校和科研院所信号与信息处理、信息与通信系统等专业的研究生教材或参考书。
2023/2/15 12:36:40 14MB 空间谱 估计
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡