第一章:AVR单片机C语言程序设计概述1.1AVR单片机简介1.2AVRStudio+WinAVR开发环境安装及应用1.3AVR-GCC程序设计基础1.4程序与数据内存访问1.5I/O端口编程1.6外设相关寄存器及应用1.7中断服务程序1.8GCC在AVR单片机应用系统开发中的优势第二章:PROTEUS操作基础2.1PROTEUS操作界面简介2.2仿真电路原理图设计2.3元件选择2.4仿真运行2.5PROTEUS与AVRStudio的联合调试2.6PROTEUS在AVR单片机应用系统开发中的优势第三章:基础程序设计3.1闪烁的LED3.2左右来回的流水灯3.3花样流水灯3.4LED模拟交通灯3.5单只数码管循环显示0~93.68只数码管滚动显示单个数字3.78只数码管显示多个不同字符3.8K1~K4控制LED移位3.9数码管显示4×4键盘矩阵按键3.10数码管显示拨码开关编码3.11继电器控制照明设备3.12开关控制报警器3.13按键发音3.14INT0中断计数3.15INT0及INT1中断计数3.16TIMER0控制单只LED闪烁3.17TIMER0控制的流水灯3.18TIMER0控制数码管扫描显示3.19TIMER1控制交通指示灯3.20TIMER1与TIMER2控制十字路口秒计时显示屏3.21用工作于计数方式的T/C0实现100以内的按键计数3.22用定时器设计的门铃3.23报警器与旋转灯3.24100000秒以内的计时程序3.25用TIMER1输入捕获功能设计的频率计3.26用工作于异步模式的T/C2控制的可调式数码管电子钟3.27TIMER1定时器比较匹配中断控制音阶播放3.28用TIMER1输出比较功能调节频率输出3.29TIMER1控制的PWM脉宽调制器3.30数码管显示两路A/D转换结果3.31模拟比较器测试3.32EEPROM读写与数码管显示3.33Flash程序空间中的数据访问3.34单片机与PC机双向串口通讯仿真3.35看门狗应用第四章:硬件应用4.174HC138与74HC154译码器应用4.274HC595串入并出芯片应用4.3用74LS148与74LS21扩展中断4.462256扩展内存4.5用8255实现接口扩展4.6可编程接口芯片8155应用4.7可编程外围定时计数器8253应用4.8数码管BCD解码驱动器7447与4511应用4.98×8LED点阵屏显示数字4.108位数码管段位复用串行驱动芯片MAX6951应用4.11串行共阴显示驱动器MAX7219与7221应用4.1216段数码管演示4.1316键解码芯片74C922应用4.141602字符液晶测试程序4.151602液晶显示DS1302实时时钟4.161602液晶工作于四位模式实时显示当前时间4.172×20串行字符液晶演示4.18LGM12864液晶显示程序4.19PG160128A液晶图文演示4.21TG126410液晶串行模式演示4.21用带SPI接口的MCP23S17扩展16位通用IO端口4.22用TWI接口控制MAX6953驱动4片5×7点阵显示器4.23用TWI接口控制MAX6955驱动16段数码管显示4.24用DAC0832生成多种波形4.25用带SPI接口的数模转换芯片MAX515调节LED亮度4.26正反转可控的直流电机4.27正反转可控的步进电机4.28DS18B20温度传感器测试4.29SPI接口温度传感器TC72应用测试4.30SHT75温湿度传感器应用4.31用SPI接口读写AT25F10244.32用TWI接口读写24C044.33MPX4250压力传感器测试4.34MMC存储卡测试4.35红外遥控发射与解码仿真第五章:综合设计5.1多首电子音乐的选播5.2电子琴仿真5.3普通电话机拨号键盘应用5.4手机键盘仿真5.5数码管模拟显示乘法口诀5.6用DS1302与数码管设计的可调电子钟5.7用DS1302与LGM12864设计的可调式中文电子日历5.8用PG12864LCD设计的指针式电子钟5.9高仿真数码管电子钟5.101602LC
2025/1/1 11:28:29 5.27MB 单片机 c语言 AVR
1
好用的STM32F412工程模板STM32F412的新型大量数据获取模式(BAM),为数据处理进行了功耗优化,将DynamicEfficiency提升到了一个新的水平。
BAM允许通信外设实现批量数据交换,同时器件的其它部分(包括CPU)可保持在省电模式。
性能:在100MHz频率下,从Flash存储器执行时,STM32F412能够提供125DMIPS/339CoreMark性能,并且利用意法半导体的ART加速器实现FLASH零等待状态。
DSP指令和浮点运算单元扩大了产品的应用范围。
功效:ST该系列产品采用意法半导体90nm工艺,使用ART加速器和动态功耗调整功能,从Flash存储器执行指令,运行模式下可实现低至112µA/MHz的电流消耗。
停机模式下,功耗低至18µA。
集成度:STM32F412器件内置高达512至1024KB的Flash存储器和高达256KB的SRAM。
具备从48到144引脚各类封装。
4路USART,速度高达12.5Mbit/s5路SPI(I²S多路传输),速度高达50Mbit/s4个I²C,高达1Mbps2xCAN(支持2.0B)1个SDIO,运行于高达48MHz,所有封装都提供1个USB2.0OTG全速(FS)2个全双工I²S,最高32-bit/192kHz3个单工I²S,最高32-bit/192kHz2个数字滤波器,用于∑Δ调制器4个PDM接口,支持立体声麦克风速度高达2.4MSPS的12位ADC,14个定时器,频率高达100MHz的16和32位定时器硬件随机数发生器
2024/12/20 9:55:40 712KB STM32 STM32F4 工程模板
1
IEEE1394接口是苹果公司开发的串行标准,中文译名为火线接口(firewire)。
同USB一样,IEEE1394也支持外设热插拔,可为外设提供电源,省去了外设自带的电源,能连接多个不同设备,支持同步数据传输。
  IEEE1394分为两种传输方式:Backplane模式和Cable模式。
Backplane模式最小的速率也比USB1.1最高速率高,分别为12.5Mbps、25Mbps、50Mbps,可以用于多数的高带宽应用。
Cable模式是速度非常快的模式,分为100Mbps、200Mbps和400Mbps几种,在200Mbps下可以传输不经压缩的高质量数据电影。
2024/12/19 16:07:44 4.22MB 总线控制 串行
1
本STM32F4XX中文手册面向应用开发人员,提供有关使用STM32F405xx/07xx\STM32F415xx/17xx、STM32F42xxx和STM32F43xxx微控制器存储器与外设的完整信息。
2024/12/19 13:04:55 12.3MB STM32F4中文 STM32F4XX STM32F4手册
1
本书是作者历时近一年撰写的反映Xilinx最新可编程技术的著作。
编写过程中感触颇多,愿与广大读者一起分享这些心得:(1)当Xilinx将ARM公司的双核Cortex-A9处理器嵌入到FPGA芯片内,并结合最新的28nm工艺,制造出全新一代的可编程SoC平台后,取名叫EPP(ExtensibleProcessingPlatform,可扩展的处理平台),后来又改成AllProgrammable平台。
在这个名字变化的过程中,反映了Xilinx给这个最新Zynq设计平台的定位—侧重于嵌入式系统的应用,未来的可编程逻辑器件向着嵌入式处理方向发展,未来的嵌入式系统“硬件”和“软件”将根据应用的要求,真正变成AllProgrammable(全可编程),即可以在单芯片内设计满足特定要求的硬件平台和相应的软件应用。
在这个全可编程的实现过程中,体现着软件和硬件协同设计、软件和硬件协同调试、软件的串行执行和硬件逻辑的并行执行完美结合、未来的嵌入式系统是“积木块”的设计风格等设计思想。
这些设计理念将在Zynq-7000平台上由理想变成实现。
(2)Zynq-7000器件是最新半导体技术、计算机技术和电子技术的一个结合体。
在一个小小的半导体硅片上却集成了当今最新的信息技术。
基于Zynq-7000平台进行高性能的嵌入式实现,需要微电子、数字逻辑、嵌入式处理器、计算机接口、计算机体系结构、数字信号处理等相关的知识。
Zynq-7000是一个比较复杂的系统,是对一个设计者的基础理论知识和系统级设计能力的一个真正的考查。
在这个平台上实现嵌入式系统的应用,体现着自顶向下的一体化设计理念。
(3)Zynq-7000平台是非常好的教学平台、科研平台和应用平台。
作为教学平台,可以在这个平台上实现全过程的计算机相关课程的教学,使学生可以清楚地看到每个实现的具体过程。
这样,学生就可以真正地理解嵌入式系统的内涵;
作为科研平台,从事嵌入式相关技术研究人员,可以在这个全开放的平台上,将算法进行高性能的实现。
并且,可以在这个平台上实现设计性能分析等研究;
作为应用平台,该平台的应用将进一步提高嵌入式系统的灵活性和可靠性、大大降低设计成本,提高产品的市场竞争力。
全书共分23章,为了更好地帮助读者学习和掌握Zynq平台的设计原理和实现方法,按照Zynq-7000基础理论、Zynq-7000体系结构和Zynq-7000设计实践进行了详细的介绍。
(1)Zynq-7000基础理论篇详细介绍了学习Zynq-7000平台需要的基础理论知识。
(2)Zynq-7000体系结构篇详细介绍了Zynq-7000内的处理器系统、可编程逻辑系统、互联结构和外设模块等。
(3)Zynq-7000设计实践篇,详细介绍了基于Zynq全可编程平台的不同设计实例。
本书所给出的设计实例代表着Zynq的应用方向,在介绍这些设计实例的过程中,贯穿了很多重要的设计方法和设计思路,这些设计方法和设计思路比设计案例本身更加重要。
为了便于读者学习,本书还配套提供了相关设计的完整工程文件及教学课件等资源。
2024/12/14 13:32:20 81.68MB XILINX  ZYNQ-7000   SOC设计指南
1
KeilAGSI外设仿真sdk开发文档
2024/12/11 14:58:25 861KB Keil AGSI 外设仿真 sdk
1
STM32F429xx中文资料,带书签,好用,翻译无误。
支持LCD等多种外设,方便阅读。
STM32F429xx中文资料,带书签,好用,翻译无误。
支持LCD等多种外设,方便阅读。
2024/12/9 10:11:27 6.44MB STM32F429xx 中文 资料
1
非常不错的一款核心板设计,可以直接应用在工业设备中使用,外设的应用非常合理,扩展口非常多,搭配底板就可以直接用
2024/12/7 3:58:10 5.64MB zynq 核心板 工业级
1
基于STM32F429平台驱动的OV2710摄像头模组。
支持1080P、720P、VGA。
由于STM32支持的外设频率低于摄像头的默认PCLK,所以有一些特殊的寄存器设置。
2024/11/28 16:32:31 684KB STM32 驱动 OV2710 摄像头
1
stm32f103zet6正点原子战舰版所有硬件资料。
包含mcu,液晶,sdka,wifi,蓝牙,等各种外设硬件。
2024/11/17 1:49:43 97.28MB stm32f103zet
1
共 158 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡