人类行为识别的目的是通过一系列的观察,对人类的动作类型、行为模式进行分析和识别,并使用自然语言等方式对其进行描述的计算机技术。
由于人类行为的复杂性和多样性,往往识别出的结果是多样性的,并且连带着行为类型的概率输出的。
随着信息技术的发展,各种移动设备和可穿戴设备正在以加速度的方式增长,其功能和嵌入的传感器也变的多样化,例如:高清相机、光传感器、陀螺仪传感器、加速度传感器、GPS以及温度传感器等。
各种各样的传感器都在时刻的记录着使用者的信息,这些记录信息不仅可以用于用户位置的预测,也可以进行用户行为的识别等。
本文使用了智能设备加速度传感器的数据,结合支持向量机的特性进行人类行为识别模型的设计和应用
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡