本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
全球地形1kmDEM(数字高程模型)拼接数据是一个重要的地理信息系统(GIS)资源,它为各种地球科学、环境研究、城市规划、导航、灾害风险评估等领域提供了基础的地形信息。
DEM是一种数字形式的地形表示,它用等间距的网格记录地表的高度信息,每个网格点代表一个特定地点的海拔高度。
在提供的压缩包文件中,包含以下几个关键文件:1.**new.tif**:这是主要的DEM数据文件,以TIFF(TaggedImageFileFormat)格式存储。
TIFF是一种广泛用于地理空间数据的图像文件格式,能够容纳大量的地理元数据,并且支持多层和色彩深度。
在这个案例中,它包含了全球1km分辨率的地形高度信息。
2.**new.tif.ovr**:这是TIFF文件的覆盖层(Overviews)文件,用于快速访问大尺寸图像。
它包含了低分辨率版本的图像,使得在查看或处理大文件时可以提高效率,无需加载整个高分辨率图像。
3.**new.tfw**:这是TIFF文件的外部世界文件(WorldFile),记录了图像的地理坐标系统信息,包括比例尺、偏移值等,确保图像的像素与实地位置准确对应。
4.**new.tif.xml**:这是TIFF文件的XML元数据文件,包含了关于图像的详细信息,如投影信息、数据来源、创建日期、分辨率等。
这些信息对于正确理解和使用DEM数据至关重要。
5.**new.tif.aux.xml**:这是GDAL(GeospatialDataAbstractionLibrary)生成的辅助元数据文件,存储了关于TIFF文件的额外信息,例如图像的边界、未记录在TFW文件中的地理配准信息等。
使用这些数据,用户可以进行以下操作:-**地形分析**:计算坡度、坡向、山谷和山脊线等地形特征。
-**水文分析**:模拟水流动向,分析河流网络、洪水风险等。
-**可视模拟**:生成地形透视图,用于景观规划和设计。
-**气候建模**:地形对气候有显著影响,DEM数据可用于气候模型的输入。
-**GIS集成**:与其他地理数据叠加,进行土地利用规划、交通规划等。
为了处理这些数据,你需要GIS软件,如QGIS、ArcGIS或GRASSGIS,它们提供了导入、查看、分析和导出DEM数据的功能。
同时,了解基本的地理坐标系统和投影知识也很重要,因为不同的地理空间数据可能使用不同的坐标参考系统,正确匹配这些系统是确保数据分析准确性的前提。
掌握使用命令行工具如gdalinfo和gdal_translate进行数据转换和处理也是有益的。
2025/12/5 22:36:25 406.14MB GIS
1
老师弄得很不错是成都理工大学地球科学学院的
2025/10/12 16:54:13 43KB 数字高程模型 (DEM) 内插程序
1
地球科学中的定量遥感反演:理论与数值处理1简介2地球科学中的典型反问题3正则化4优化5实际应用5.1核驱动BRDF模型反演5.2机载激光雷达遥感反演5.3粒子尺度分布函数反演6结论
2024/11/5 15:55:48 988KB 定量遥感 遥感反演
1
ENVI  ENVI(TheEnvironmentforVisualizingImages)是美国ITTVisualInformationSolutions公司的旗舰产品。
ENVI由遥感领域的科学家采用IDL开发的一套功能强大的遥感图像处理软件;
它是快速、便捷、准确地从地理空间影像中提取信息的首屈一指的软件解决方案,它提供先进的,人性化的使用工具来方便用户读取、准备、探测、分析和共享影像中的信息。
今天,众多的影像分析师和科学家选择ENVI来从地理空间影像中提取信息。
已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋,测绘勘察和城市与区域规划等行业。
  创建于1977年的RSI(现为ITTVisualInformationSolutions公司)已经成功地为其用户提供了超过30年的科学可视化软件服务。
目前ITTVisualInformationSolutions的用户数超过150,000,遍布于80个国家与地区。
从2000年开始连续三年,ENVI被美国国家影像制图局(NIMA)等权威机构组织的Passfind项目遥感影像系统评比当中被评为“最佳的遥感目标识别软件”。
2004年RSI公司并入上市公司ITT公司,并于2006年5月正式成立ITTVisualInformationSolutions公司,ENVI&IDL的发展步伐更加有利与快捷,更多的新功能与算法加进到新版本中。
  强大的影像显示、处理和分析系统  ENVI包含齐全的遥感影像处理功能:常规处理、几何校正、定标、多光谱分析、高光谱分析、雷达分析、地形地貌分析、矢量应用、神经网络分析、区域分析、GPS联接、正射影象图生成、三维图像生成、丰富的可供二次开发调用的函数库、制图、数据输入/输出等功能组成了图像处理软件中非常全面的系统。
  ENVI对于要处理的图像波段数没有限制,可以处理最先进的卫星格式,如Landsat7、IKONOS、SPOT,RADARSAT,NASA,NOAA,EROS和TERRA,并准备接受未来所有传感器的信息。
  强大的多光谱影像处理功能  ENVI能够充分提取图像信息,具备全套完整的遥感影像处理工具,能够进行文件处理、图像增强、掩膜、预处理、图像计算和统计,完整的分类及后处理工具,及图像变换和滤波工具、图像镶嵌、融合等功能。
ENVI遥感影像处理软件具有丰富完备的投影软件包,可支持各种投影类型。
同时,ENVI还创造性地将一些高光谱数据处理方法用于多光谱影像处理,可更有效地进行知识分类、土地利用动态监测。
  更便捷地集成栅格和矢量数据  ENVI包含所有基本的遥感影像处理功能,如:校正、定标、波段运算、分类、对比增强、滤波、变换、边缘检测及制图输出功能,并可以加注汉字。
ENVI具有对遥感影像进行配准和正射校正的功能,可以给影像添加地图投影,并与各种GIS数据套合。
ENVI的矢量工具可以进行屏幕数字化、栅格和矢量叠合,建立新的矢量层、编辑点、线、多边形数据,缓冲区分析,创建并编辑属性并进行相关矢量层的属性查询。
  ENVI的集成雷达分析工具助您快速处理雷达数据  用ENVI完整的集成式雷达分析工具可以快速处理雷达SAR数据,提取CEOS信息并浏览RADARSAT和ERS-1数据。
用天线阵列校正、斜距校正、自适应滤波等功能提高数据的利用率。
纹理分析功能还可以分段分析SAR数据。
ENVI还可以处理极化雷达数据,用户可以从SIR-C和AIRSAR压缩数据中选择极化和工作频率,用户还可以浏览和比较感兴趣区的极化信号,并创建幅度图像和相位图像。
  地形分析工具  ENVI具有三维地形可视分析及动画飞行功能,能按用户制定路径飞行,并能将动画序列输出为MPEG文件格式,便于用户演示成果。
  准备您的影像  ENVI提供了自动预处理工具,可以快速、轻松地预处理影像,以便进行查看浏览或其他分析。
通过ENVI,您可以对影像进行以下处理:  •正射校正  •影像配准  •影像定标  •大气校正  •创建矢量叠加  •确定感兴趣区域(ROIs)  •创建数字高程模型(DEMs)  •影像融合,掩膜和镶嵌  •调整大小,旋转,或数据类型转换  探测影像  ENVI提供了一个直观的用户界面和易用的工具,让您轻松、快速地浏览和探测影像。
您可以使用ENVI完成的工作包括:浏览大型数据集和元数据,对影像进行视觉对比,创建强大的3D场景,创建散点图,探测像素特征等。
  分析影像  ENVI提供了业界领先的图像处理功能,方便您从事各种用途的信息提取。
ENVI提供了一套完整的经科学实践证明的成熟工具来帮助您分析影像。
  数据分析工具  ENVI包括一套综合数据分析工具,通过实践证明的成熟算法快速、便捷、准确地分析图像。
  •创建地理空间统计资料,如自相关系数和协方差  •计算影像统计信息,如平均值、最小/最大值、标准差  •提取线性特征  •合成雷达影像  •主成分计算  •变化检测  •空间特征测量  •地形建模和特征提取  •应用通用或自定义的滤波器  •执行自定义的波段和光谱数学函数  光谱分析工具  光谱分析通过像素在不同波长范围上的反应,来获取有关物质的信息。
ENVI拥有目前最先进的,易于使用的光谱分析工具,能够很容易地进行科学的影像分析。
ENVI的光谱分析工具包括以下功能:  •监督和非监督方法进行影像分类  •使用强大的光谱库识别光谱特征  •检测和识别目标  •识别感兴趣的特征  •对感兴趣物质的分析和制图  •执行像素级和亚像素级的分析  •使用分类后处理工具完善分类结果  •使用植被分析工具计算森林健康度  共享您的信息  ENVI能轻松地整合现有的工作流,让您能在任何环境中与同事们分享地图和报告。
所处理的图像可以输出成常见的矢量格式和栅格影像便于协同和演示。
  自定义您的地理空间影像应用  ENVI建立于一个强大的开发语言—IDL之上。
IDL允许对其特性和功能进行扩展或自定义,以符合用户的具体要求。
这个强大而灵活的平台,可以让您创建批处理、自定义菜单、添加自己的算法和工具,甚至将C++和Java代码集成到您的工具中等。
  自2007年起,与著名的GIS厂商ESRI公司开展全面战略合作,ENVIReaderforArcGIS模块让ArcGIS系列软件全面支持ENVI的数据格式,最新版本ENVI4.5完全支持ArcGIS的Geodatabase等。
2024/10/15 19:08:32 2.72MB envi
1
人类影响指数(HII)是表征人类活动影响的量化指标,美国哥伦比亚大学野生动物保护协会(WCS)和国际地球科学信息网络中心(CIESIN)开发的全球人类影响指数数据集(GlobalHumanInfluenceIndexv2),综合考虑了人口密度,土地利用/基础设施(建成区、夜间灯光、土地覆盖)和交通线路(海岸线、公路、铁路、通航河流)等因素
2024/7/17 22:10:09 23.64MB 全球人类影响指数
1
第一款真正的任意多物理场直接耦合分析软件COMSOLMultiphysics中文使用手册。
AC/DC模块(AC/DCModule)声学模块(AcousticsModule)CAD导入模块(CADImportModule)化学工程模块(ChemicalEngineeringModule)地球科学模块(EarthScienceModule)热传导模块(HeatTransferModule)材料库(MaterialLibrary)微机电系统模块(MEMSModule)射频模块(RFModule)结构力学模块(StructuralMechanicsModule)COMSOL脚本解释器(COMSOLSCRIPT)反应工程实验室(ReactionEngineeringLAB)信号与系统实验室(SIGNALSSYSTEMSLAB)最优化实验室(OPTIMIZATIONLAB)
2023/7/12 12:10:20 6.42MB COMSOL 教程
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡