BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
东华大学核密度估计KDE代码第一部分是一个三维的彩色KDE估计图(最好用MATLAB画);
第二部分是测试图片的运动目标二值图像检测结果(运动员用白色像素,背景用黑色)
2025/1/19 9:37:01 379KB KDE代码
1
给定皮肤镜黑素细胞瘤图像,检测毛发噪声,并修复毛发遮挡部位的信息。
皮肤镜图像毛发去噪,主要包括五个步骤:波谷检测器、阈值分割、区域生长、标记连通域、掩膜恢复重建。
2024/8/21 10:32:15 4KB 图像处理
1
给定皮肤镜黑素细胞瘤图像,检测毛发噪声,并修复毛发遮挡部位的信息。
(1)灰值化:对皮肤镜黑素细胞瘤彩色图像进行灰值化处理,将彩色图像变成灰度格式;
(2)波谷检测器:使用结构元素对给定灰度图像进行形态学灰度闭运算,先膨胀后腐蚀,填充物体内细小空洞,连接邻近物体,再将原图与灰度闭运算得到的图像相减,得到背景色较暗,毛发区域较亮的毛发提取图像;
(3)阈值分割:经过波谷检测后的图像能够基本提取出毛发区域,使用交互式阈值分割,对毛发提取图像进行二值分割,为区域生长制作毛发掩膜做准备;
(4)标记连通域,剔除弱小噪声:用区域生长法提取连通域,并标记毛发区域,统计各连通区域的大小,设定阈值,屏蔽小的连通区域,去除背景中的杂小噪声点,尽可能的少破坏原始图像的信息;
(5)掩膜,恢复原始皮肤信息:将去除噪声后的二值图像作为掩膜,对毛发区域进行恢复重建。
2024/5/16 1:34:17 67.4MB 区域生长 波谷检测 C++ 掩膜
1
集合了卷积神经网络从神经网络分类Alnex,GoogleNetv1-v4,VGG,Resnet,NetworkinNetwork论文,图像检测R-CNN,FAST-RCNN,Faster-rcnn,Mask-rcnn,SSPN-net,SSD,YOLO,YOLO_v2,YOLO_v3,
2024/5/8 19:11:33 43.2MB 图像检测
1
Python编程opencv图像检测缺陷,带有图片例程,内容清晰.
2024/3/12 20:33:27 1.67MB python
1
火焰图集合和训练好的yolo_tiny火焰检测weights,经过处理成voc数据集,而且经过训练,可以实现yolo-tiny的图像检测。
2024/3/3 12:56:08 63.4MB weight fire voc
1
机器视觉汽车图像检测数据集Computervisioncardatasetforopencvandmachinelearning》byVladaKucera。
2024/1/30 8:10:45 5.85MB 数据集
1
sar图像检测提取程序
2023/7/29 16:30:44 3KB matlab sar 图像 检测
1
Facebook发布,基于PyTorch1.0的高性能图像检测/分割实现,比Detectron快2倍
2023/7/27 19:42:34 4.49MB Python开发-机器学习
1
共 15 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡