数据结构是计算机科学中的核心概念,它涉及到如何有效地组织和管理大量数据,以便于高效地进行存储、检索、更新和删除等操作。
C语言是一种强大的系统编程语言,它提供了底层控制,非常适合实现数据结构的算法。
这个“数据结构C语言模拟器”很可能是为了帮助学习者通过实际操作来理解各种数据结构的工作原理。
1. **数组**:数组是最基本的数据结构,它是一组相同类型元素的集合,可以通过索引来访问每个元素。
在C语言中,数组的声明和使用是非常直接的。
2. **链表**:链表是由一系列节点组成,每个节点包含数据以及指向下一个节点的指针。
链表分为单链表、双链表和循环链表等类型,C语言中通常通过结构体来实现链表。
3. **栈**:栈是一种后进先出(LIFO)的数据结构,常用于函数调用、表达式求值等场景。
C语言中可以使用数组或动态内存分配来实现栈。
4. **队列**:队列是一种先进先出(FIFO)的数据结构,常用于任务调度、缓冲区管理等。
C语言中可以使用数组或链表来实现队列。
5. **树**:树是一种非线性的数据结构,每个节点可以有零个或多个子节点。
二叉树、平衡树(如AVL树、红黑树)和搜索树(如B树、B+树)是常见的树形结构。
C语言中,树通常通过指针和结构体来实现。
6. **图**:图是由顶点和边组成的非线性数据结构,用于表示对象之间的关系。
图可以是无向的或有向的,加权的或无权重的。
邻接矩阵和邻接表是常见的图的表示方法。
7. **哈希表**:哈希表提供快速的查找、插入和删除操作,通过哈希函数将键映射到特定位置。
C语言中,哈希表通常通过数组和链表结合的方式来实现。
8. **排序和搜索算法**:包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序以及二分查找、哈希查找等,这些算法在数据结构中起着关键作用。
9. **递归和分治策略**:递归是一种函数直接或间接调用自身的方法,而分治策略是将大问题分解为小问题解决的策略,如归并排序和快速排序算法就应用了这种思想。
10. **动态规划**:动态规划用于求解最优化问题,通过构建状态转移矩阵或数组来找到最优解。
这个“数据结构C语言模拟器”很可能包含了上述所有或部分数据结构的实现,并通过详细解释帮助用户理解它们的工作原理和操作流程。
通过实际操作,学习者可以更好地掌握数据结构的精髓,提高编程能力和问题解决能力。
在学习过程中,理解每个数据结构的特性、适用场景以及优缺点至关重要,同时掌握相应的操作算法也是必不可少的。
这个模拟器无疑为学习者提供了一个实践和巩固理论知识的宝贵平台。
2025/6/15 20:24:23 6.82MB
1
资源包括:源代码,可执行文件。
1.问题描述设计散列表实现电话号码查找系统。
2.基本要求1)设每个记录有下列数据项:用户姓名、地址、电话号码;
2)从文件输入各记录,分别以电话号码和用户名为关键字建立散列表;
(假设人名为中国人姓名的汉语拼音形式zhoukunxiao)3)采用一定的方法解决冲突;
(哈希函数可以用数字分析法和除留余数法构造,用线性探测再散列法或链地址法处理冲突)4)查找并显示给定电话号码的记录;
(显示比较次数)5)查找并显示给定用户姓名的记录;
(显示比较次数)6)输出相应的哈希表,计算平均查找长度;
7)设计一个菜单,上述操作要求都作为菜单中的主要菜单项。
3.测试数据取所在班级的n(n>=20)个同学记录。
2024/12/13 22:04:14 14KB 哈希表 c语言 课程设计
1
**密码机器v1.0**是一款专为CTF(CaptureTheFlag)竞赛设计的网页脚本工具,它集成了多种编码和加密方法,让用户在浏览器环境下就能轻松进行各种编码转换与解密操作。
这款工具的出现极大地提升了密码分析和网络安全领域中数据处理的效率,尤其对于那些需要频繁进行编码转换的场景,比如Web安全挑战、逆向工程或密码学研究。
我们来看看**编码转换**方面。
编码是计算机科学中基础且关键的概念,不同的编码方式决定了数据如何在数字世界中存储和传输。
常见的编码类型有ASCII、Unicode(包括UTF-8、UTF-16等)、Base64等。
在CTF比赛中,可能会遇到需要将字符串从一种编码转换为另一种的情况,例如,从ASCII转换为UTF-8,或者通过Base64编码隐藏信息。
密码机器v1.0提供了这些功能,使得参赛者可以快速解码或编码,以揭示隐藏的信息。
**加密方式**是密码学的核心。
此工具可能包含了对称加密(如AES、DES)、非对称加密(RSA、ECC)、哈希函数(MD5、SHA系列)、消息认证码(MAC)、伪随机数生成器(PRNG)以及各种密码算法的变种。
在CTF中,解密任务通常涉及找出密文的正确加密算法,然后使用正确的密钥还原原文。
密码机器v1.0提供了一站式的加密/解密平台,使得这个过程变得简单易行。
此外,**密码学技巧**在CTF中也至关重要,例如,XOR运算常常被用于简单的加解密操作,而字典攻击、蛮力攻击、生日攻击等破解策略也是解决加密问题时常用的方法。
密码机器v1.0可能内置了这些攻击模式,帮助用户快速测试各种可能性,提高解密效率。
不仅如此,此工具可能还支持**混淆和编码隐藏**技术,如HTML实体编码、URL编码、JavaScript混淆等,这些都是CTF中常见的障眼法。
通过解混淆和解码,我们可以揭示被隐藏的信息。
密码机器v1.0是一款强大的密码学工具,它整合了多种编码、加密、解密和攻击手段,是CTF爱好者和信息安全专业人士不可或缺的助手。
使用时,只需在浏览器中打开,无需安装任何软件,简单易用,大大降低了密码学应用的技术门槛,提高了工作效率。
无论是在学习密码学原理,还是在实际的网络安全挑战中,都能发挥重要作用。
2024/11/5 19:46:12 16KB 密码机器
1
这是数据结构课程作业,用二次探测再散列法解决冲突建立哈希表并查找从键盘读入待查找的权重数值,以除留余数法为哈希函数,二次探测再散列法解决冲突建立哈希表,基于哈希算法从数组中查找相应的记录,计算相应的查找时间,并在屏幕上输出显示。
1
基于哈希的最近邻居搜索已在许多应用程序中变得有吸引力。
但是,在使用汉明距离排序时,散列中的量化通常会降低判别能力。
此外,对于大规模的视觉搜索,现有的散列方法不能直接支持对具有多个源的数据进行有效搜索,而文献表明自适应地合并来自不同源或视图的补充信息可以显着提高搜索性能。
为了解决这些问题,本文提出了一种新颖且通用的方法来构建具有多个视图的多个哈希表,并在按位和按表级别生成细粒度的排名结果。
对于每个哈希表,引入了查询自适应按位加权,以通过同时利用哈希函数的质量及其对最近邻居搜索的补充来减轻量化损失。
从表格的角度来看,针对不同的数据视图构建了多个哈希表作为联合索引,在该哈希表上,提出了特定于查询的排名融合,以通过散布在图表中对按位排名的所有结果进行排名。
在三个著名基准上进行图像搜索的综合实验表明,与最新方法相比,该方法在单表和多表搜索中可分别实现17.11%和20.28%的性能提升。
2024/8/29 18:15:06 896KB Locality-sensitive hashing; hash code
1
(1)每个人的信息至少包括姓名,电话,地址。
至少包括对通讯录的创建,添加和按姓名查找等功能。
(2)假设人名为汉语拼音全拼形式,待插入哈希表的长度为你所在班级的人数。
哈希函数用除留余数法构造,采用链地址法或二次探测再散列法解决冲突。
(3)完成菜单设计。
操作有必要的提示。
2024/7/21 18:39:04 11KB 哈希表通讯录
1
假设人名为中国人姓名的汉语拼音形式。
待填入哈希表的人名共有30个,取平均查找长度的上限为2。
哈希函数用除留余数法构造,用线性探测再散列法或链地址法处理冲突。
1
通过美尔频率倒谱系数加奇异值分解的方法提出出来的音频信号的感知哈希值.编程环境是matlab。
其中包含了MFCC函数,分帧函数,梅尔滤波器组函数等。
2024/3/7 8:21:36 2KB 感知哈希,SVD MFCC
1
问题描述:针对某个单位电话号码簿,设计一个哈希表,并完成相应的建表和查表程序。
基本要求:设每个记录有下列数据项:电话号码、用户名、住址。
从键盘输入各记录,以用户名为关键字建立哈希表,哈希函数用除留取余数法构造,采用线性探测法解决冲突。
可以插入、查找、删除并显示给定用户名的记录,并计算查找长度,哈希表保存到文件中,并能从文件中读取数据。
测试数据:取某个单位电话号码簿中的30个记录。
提高要求:(1)将电话号码薄以文件形式保存到盘上,能够按用户名和电话号码两种形式建立哈希表并实现插入、查找、删除表中元素的功能。
(2)对于相同的哈希函数,采用两种或两种以上的处理冲突的方法,如线性探测法和拉链法,比较不同的处理冲突的方法平均查找长度的变化。
测试时,采用同一组测试数据,分别用不同的方法处理冲突,记录并输出各自的平均查找长度。
(3)设计图形用户界面
2023/12/27 16:50:49 4KB 哈希表 代码 电话号码 删除
1
sha1哈希函数,c语言实现
2023/12/25 19:47:04 2KB sha1哈希函数
1
共 24 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡