在文本聚类中需要衡量中文文本之间的相似性。
本文首先讨论了文本相似度的概念和常用计算算法,详细介绍了向量空间模型和算法步骤,采用删除去除词表、近义词合并、修改文件长度3中策略对算法进行了改进。
最后借助盘古分词组件和搜狗实验室的互联网词库,在VisualStudio2008环境下使用C#语言对算法进行了实现。
使用在CNKI上得到的5个不同领域的500篇学术论文的中文摘要对算法进行了测试,结果表明新算法在误差率方面有较大改善,但运行时间较长。
1
向量空间模型(VSM)的JAVA实现,从文档表示到相似度计算,使用两种相似度计算方式:cos和tf-idf算法,对错误进行修改
2024/4/11 8:17:58 2.63MB 向量空间模型 JAVA
1
向量空间模型(VSM)的JAVA实现,从文档表示到相似度计算,使用两种相似度计算方式:cos和tf-idf算法
2023/12/24 22:41:27 1.87MB 向量空间模型 VSM JAVA
1
针对短文本特征稀疏、噪声大等特点,提出一种基于LDA高频词扩展的方法,通过抽取每个类别的高频词作为向量空间模型的特征空间,用TF-IDF方法将短文本表示成向量,再利用LDA得到每个文本的隐主题特征,将概率大于某一阈值的隐主题对应的高频词扩展到文本中,以降低短文本的噪声和稀疏性影响。
实验证明,这种方法的分类性能高于常规分类方法
2023/12/20 19:27:30 624KB LDA 短文本分类
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡