第1章绪论第2章SAR成像原理2.1引言2.2SAR系统参数2.3单脉冲距离向处理2.4线性调频脉冲与脉冲压缩2.5SAR方位向处理2.6SAR线性测量系统2.7辐射定标2.8小结参考文献附录2A星载SAR的方位向处理第3章图像缺陷及其校正3.1引言3.2SAR成像散焦3.2.1自聚焦方法3.2.2自聚焦技术的精确性3.2.3散射体性质对自聚焦的影响3.3几何失真与辐射失真3.3.1物理原因及关联的失真3.3.2基于信号的MOCO方法3.3.3天线稳定性3.4残留SAR成像误差3.4.1残留的几何与辐射失真3.4.2旁瓣水平3.5基于信号的MOCO方法的改进3.5.1包含相位补偿的迭代自聚焦3.5.2较小失真的高频跟踪3.5.3常规方法与基于信号方法相结合的MOC0方法3.6小结参考文献第4章SAR图像的基本特性4.1引言4.2SAR图像信息的特质4.3单通道图像类型与相干斑4.4多视处理估计RCS4.5相干斑的乘性噪声模型4.6RCS估计——成像与噪声的影响4.7SAR成像模型的结果4.8空间相关性对多视处理的影响4.9系统引入空间相关性的补偿4.9.1子采样4.9.2预平均4.9.3插值4.10空间相关性估计:平稳性与空间平均4.11相干斑模型的局限性4.12多维SAR图像4.13小结参考文献第5章数据模型5.1引言5.2数据特征5.3经验数据分布5.4乘积模型5.4.1RCS模型5.4.2强度概率密度函数5.5概率分布模型的比较5.6基于有限分辨率成像的目标RCS起伏5.7数据模型的局限性5.8计算机仿真5.9小结参考文献第6章RCS重建滤波器6.1引言6.2相干斑模型和图像质量度量6.3贝叶斯重建6.4基于相干斑模型的重建6.4.1多视处理相干斑抑制6.4.2最小均方误差相干斑抑制……第7章RCS分类与分割第8章纹理信息提取第9章相关纹理第10章目标信息第11章多通道SAR数据的信息处理第12章多维SAR图像分析技术第13章SAR图像的分类第14章现状与前景分析
2025/3/28 18:57:23 36.01MB 合成孔径雷达 SAR雷达成像
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
这本书提供了充分的代表性逆合成孔径雷达(ISAR)成像,这是一种流行和重要的雷达信号处理工具。
本书涵盖了所有可能的ISAR成像方面。
这本书提供了一个介绍了专家组的逆问题和合成孔径雷达(SAR)提出的问题之前,信号处理技术和雷达基本相当。
如高分辨率SAR的重要概念,脉冲压缩和图像构成连同相关的MATLAB代码。
ISAR成像的基本原理后,这本书提供了相关的MATLAB函数和代码成像ISAR成像的详细程序。
ISAR成像,多个成像技巧和微调,如零填充和窗口程序,以提高图像的质量也被提出。
最后,逆合成孔径雷达图像中的各种实际应用,如成像天线平台散射的,是在单独的一章。
所有这些算法,MATLAB代码和数字都包括在内。
最后一章考虑了在ISAR成像的先进理念和发展趋势。
1
电子工业出版社,2005.2.第1章合成孔径雷达图像的物理基础;
第2章合成孔径雷达的原理;
第3章星载合成孔径雷达系统;
第4章合成孔径雷达图像;
第5章相关斑的模型;
第6章反射系数的估计与SAR图像滤波;
第7章SAR图像分类;
第8章点、边缘和线的检测;
第9章雷达几何与地形几何;
第10章雷达立体测量;
第11章雷达斜坡测量;
第12章雷达干涉测量;
第13章条纹的展开;
第14章雷达海洋探测;
2022/9/5 5:19:33 49.71MB SAR 合成孔径雷达 图像处理
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡