所用变换器为IGBT搭建的单个三相AC-DC变换器模型,含有逆变(开环、PQ)以及整流(VdcQ)两种运行模型的下的详细模型以及对应的平均化模型(ThispackagecontaindetailedmodelandAverage-valuemodel(AVM)ofasinglethree-phaseACDCVSCconverterusingopen-loop,PQandVdcQcontrolscheme.)
2024/9/12 19:31:25 337KB Matlab/Simul PQ control VdcQ
1
对数放大器实实质上就是一种对数变换器,是指输出信号幅值与输入信号幅值呈对数函数关系的基本放大电路。
在电子测量技术领域之中,某些信号的电压具有比较宽的动态范围,例如在雷达、声纳等无线电接受系统中,接收机前端信号动态范围可以达到120dB甚至更高。
一般的线性放大器不能处理这样宽的动态范围,为了更加方便的测试和分析这些信号,在线代测量接收机的设计中,采用大动态范围对数放大器设计技术。
本文介绍了一种核心器件为AD8306的大动态范围对数放大器的设计,实现了90dB的动态范围,宽带频率,灵敏度高。
采用该方法实现的对数放大器动态范围大,电路简单易于实现,如果采用多片芯片级联还可以实现更大动态范围的对数放大器。
实际应用表明,本文给出的设计方法合理有效,具有很高的使用价值。
1
电力电子学变换器、应用和设计(第3版)高教社版
2024/8/26 7:17:51 12.31MB 电力 电子学 变换器
1
LCC谐振变换器的电路特性分析
2024/8/21 19:31:14 531KB LCC谐振
1
电力电子与交流传动系统仿真程序谢卫《电力电子与交流传动系统传真》在介绍系统仿真基本概念的基础上,从电力电子变换器和交流电动机两个方面分别建立通用的数学模型和仿真模型,从稳态分析和动态分析的角度探究系统运行的基本规律,并给出若干仿真实例。
《电力电子与交流传动系统传真》侧重于电力电子变换器和交流传动系统的综合分析与仿真,特别是强调数学模型的统一性和通用性,使读者通过学习可以做到举一反三。
《电力电子与交流传动系统传真》是作者多年科研成果的总结,同时也参考了大量国内外的文献资料,内容丰富、全面系统、实用性很强。
2024/8/21 2:05:46 236KB 电力电子 交流传动系统 仿真 程序
1
移相全桥软开关DCDC变换器设计
2024/8/16 0:44:03 714KB 移相全桥 软开关 DCDC 变换器
1
本书是开关电源类的经典书籍,几乎所有搞电源的的人士都知道这书,但是现在书店基本不卖,是一本很好的书。
2024/7/17 7:52:47 3.23MB 电源
1
摘要:介绍了一种正弦波功率信号源电路,该电路用高速双路PWM控制器UC3825为控制芯片,功率MOSFET为开关器件而构成的推挽逆变器,逆变器输出经高频LC滤波后输出1MHz/100W正弦波功率信号。
实验证明电路产生的波形质量好,电路结构简单,控制方便,并具有体积小,效率高的特点。
关键词:功率信号源;
推挽;
脉宽调制;
变换器1引言低频小功率信号源往往用线性功率放大电路,其电路比较简单,波形质量好,易于实现。
而对于高频、中大功率信号源用线性功率放大电路难以实现,特别是对于要求1MHz/100W正弦波功率信号源,采用线性功率放大电路,其电路结构复杂,调整困难,不易实现。
而采用高速双路PWM控制器UC
2024/7/2 9:06:05 125KB
1
隔离型双向dcdc变换器,单移相控制方式,结构比较基础,可以参考,用pscad4.5搭的
2024/6/20 2:50:24 90KB dcdc ibdc
1
386D音频功率放大器主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但是在1脚和8脚之间增加一只外接的电阻和电容,便可将电压增益调为任意值,直至200。
输入端以地为参考,同时输出端被自动偏置到电源电压的一半。
在6V电源电压下,它的静态功耗仅为24mW,使得386D特别适合于电池供电的场合。
386D的封装形式为DIP8特点:z静态功耗低,约为4mA,可用电池供电z电压增益由20~200可调z电源电压范围宽,Vcc=4~12Vz外围元件少z失真度低应用范围zAM/FM收音机音频放大器z线驱动器z便携式录音机音频功率放大器z超声波驱动器z免提电话机扬声系统z小型伺服驱动器z电视机音频系统z电源变换器
2024/6/17 11:29:01 1.73MB 386D 低压音频 功率放大器 PDF
1
共 100 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡