统计分析软件SPSS的图书源代码--〉《SPSS在统计分析中的应用》,作者:朱建平等,印刷日期:2010-9-29源代码第二章~第十五章,文件大小443kb。
图书目录第1章SPSS软件概述1.1SPSS软件的基本特点和功能 11.2SPSS软件的安装、启动与退出 21.2.1SPSS软件的安装 21.2.2SPSS软件的启动 21.2.3SPSS软件的退出 31.3SPSS操作环境介绍 31.3.1SPSS软件的3个常用窗口 31.3.2SPSS菜单和工具栏 51.3.3SPSS对话框的基本操作方式 5第2章SPSS数据文件管理 72.1SPSS数据文件的结构 72.1.1SPSS数据文件的特点 72.1.2SPSS变量的属性 72.2建立一个数据文件 102.3读取外部数据 112.3.1读取Excel文件 122.3.2读取ASCII码文件 122.4SPSS数据的编辑和保存 152.4.1Edit菜单中的数据编辑功能 152.4.2Data菜单中的数据编辑功能 162.4.3SPSS数据的保存 16第3章数据整理 173.1数据排序 173.2数据排秩 183.3数据转置 193.4选择观测的子集 203.5数据分类汇总 223.6合并数据文件 233.6.1纵向合并(AddCases) 233.6.2横向合并(AddVariables) 243.7数据拆分 263.8计算新变量 283.9数据重新编码 303.10数据分组 313.11数据标准化 32第4章统计描述 344.1基本概念和原理 344.1.1频数分布 344.1.2集中趋势指标 344.1.3离散程度指标 354.1.4反映分布形态的描述性指标 354.2频数分析 364.2.1操作步骤 364.2.2实例结果分析 384.3描述性统计量 394.3.1操作步骤 394.3.2实例结果分析 404.4探索性数据分析 414.4.1操作步骤 424.4.2实例结果分析 444.4.3方差齐性检验的实例 46第5章统计推断 475.1统计推断概述 475.1.1参数估计 475.1.2假设检验 485.2单样本t检验 495.2.1理论与方法 495.2.2操作步骤 495.2.3实例结果分析 505.3两独立样本t检验 515.3.1理论与方法 515.3.2操作步骤 515.3.3实例结果分析 525.4配对样本t检验 535.4.1理论与方法 535.4.2操作步骤 545.4.3实例结果分析 54第6章方差分析 566.1方差分析概述 566.2单因素单变量方差分析 566.2.1理论和方法 566.2.2操作步骤 586.2.3实例结果分析 606.3多因素单变量方差分析 626.3.1理论与方法 626.3.2固定效应、随机效应和协变量 646.3.3操作步骤 656.3.4实例结果分析 676.3.5不考虑交互效应的多因素方差分析 706.3.6引入协变量的多因素方差分析 70第7章非参数检验 727.1非参数检验概述 727.2卡方检验(检验) 727.2.1理论与方法 727.2.2操作步骤 737.2.3实例结果分析 747.3二项分布检验 757.3.1理论与方法 757.3.2操作步骤 757.3.3实例结果分析 767.4游程检验 777.4.1理论与方法 777.4.2操作步骤 777.4.3实例结果分析 787.5单样本K-S检验 797.5.1理论与方法 797.5.2操作步骤 797.5.3实例结果分析 807.6两独立样本检验 807.6.1理论与方法 807.6.2操作步骤 827.6.3实例结果分析 827.7多独立样本检验 847.7.1理论与方法 847.7.2操作步骤 857.7.3实例结果分析 857.8两配对样本检验 877.8.1理论与方法 877.8.2操作步骤 887.8.3实例结果分析 887.9多配对样本检验 907.9.1
2025/6/24 16:07:56 444KB 统计学 统计分析软件 SPSS
1
1.构建信用风险类型的特征2.特征的分箱分箱的优点Best-KS分箱法和卡方分箱法3.特征信息度的计算和意义
1
今天小编就为大家分享一篇python实现二分类的卡方分箱示例,具有很好的参考价值,希望对大家有所帮助。
一起跟随小编过来看看吧
2025/3/9 6:50:39 56KB python 二分类 卡方分箱
1
%MATLAB数学建模工具箱%%本工具箱主要包含三部分内容%1.MATLAB常用数学建模工具的中文帮助%2.贡献MATLAB数学建模工具(打*号)%3.中国大学生数学建模竞赛历年试题MATLAB程序%数据拟合%interp1-一元函数插值%spline-样条插值%polyfit-多项式插值或拟合%curvefit-曲线拟合%caspe-各种边界条件的样条插值%casps-样条拟合%interp2-二元函数插值%griddata-不规则数据的二元函数插值%*interp-不单调节点插值%*lagrange-拉格朗日插值法%%方程求根%inv-逆矩阵%roots-多项式的根%fzero-一元函数零点%fsolve-非线性方程组%solve-符号方程解%*newton-牛顿迭代法解非线性方程%%微积分和微分方程%diff-差分%diff-符号导函数%trapz-梯形积分法%quad8-高精度数值积分%int-符号积分%dblquad-矩形域二重积分%ode45-常微分方程%dsolve-符号微分方程%*polyint-多项式积分法%*quadg-高斯积分法%*quad2dg-矩形域高斯二重积分%*dblquad2-非矩形域二重积分%*rk4-常微分方程RungeKutta法%%随机模拟和统计分析%max,min-最大,最小值%sum-求和%mean-均值%std-标准差%sort-排序(升序)%sortrows-按某一列排序(升序)%rand-[0,1]区间均匀分布随机数%randn-标准正态分布随机数%randperm-1...n随机排列%regress-线性回归%classify-统计聚类%*trim-坏数据祛除%*specrnd-给定分布律随机数生成%*randrow-整行随机排列%*randmix-随机置换%*chi2test-分布拟合度卡方检验%%数学规划%lp-线性规划%linprog-线性规划(在MATLAB5.3使用)%fmin-一元函数极值%fminu-多元函数极值拟牛顿法%fmins-多元函数极值单纯形搜索法%constr-非线性规划%fmincon-非线性规划(在MATLAB5.3使用)%%离散优化%*enum-枚举法%*monte-蒙特卡洛法%*lpint-线性整数规划%*L01p_e-0-1整数规划枚举法%*L01p_ie-0-1整数规划隐枚举法%*bnb18-非线性整数规划(在MATLAB5.3使用)%*bnbgui-非线性整数规划图形工具(在MATLAB5.3使用)%*mintreek-最小生成树kruskal算法%*minroute-最短路dijkstra算法%*krusk-最小生成树kruskal算法mex程序%*dijkstra-最短路dijkstra算法mex程序%*dynprog-动态规划%%%图形%plot-平面曲线(一元函数)%plot3-空间曲线%mesh-空间曲面(二元函数)%*meshf-非矩形网格图%*draw-用鼠标划光滑曲线%%中国大学生数学建模竞赛题解%jm96a-捕鱼策略%jm96b-节水洗衣机%jm96bfun-节水洗衣机优化函数%jm97a-零件参数设计%jm97afun-零件参数函数%jm97aoptim-零件参数设计优化函数%jm97b-截断切割%jm97bcount-截断切割枚举法%jm97brule-截断切割优化准则%jm98a1-风险投资模型求解%jm98a2-风险投资模型讨论%jm98a3-收益与风险非线性模型求解%jm98a3fun-收益与风险非线性模型优化函数%jm98b-灾情巡视路线(C程序)%jm99a1-自动化车床模型一%jm99a1fun-自动化车床模型目标函数%jm99a1simu-自动化车床模型随机模拟%jm99asmfun-自动化车床模型费用函数%%演示程序%fun
1
《深入浅出统计学》具有深入浅出系列的一贯特色,提供最符合直觉的理解方式,让统计理论的学习既有趣又自然。
从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。
本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。
本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
2025/1/22 6:57:50 49.93MB 统计学
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
用matlab进行卡方拟合检验的详细过程
2024/7/28 15:20:18 283KB 非我莫属
1
卡方特征词选择法选取1000个特征词的中间文件
2024/4/26 17:03:26 13.78MB 文本分类 卡方
1
非中心卡方分布资料,包括各种相关性介绍例如;
历史,研究变化情况等
2024/3/27 7:46:10 3.09MB 卡方分布
1
不同统计分布雷达散射截面(RCS服从卡方分布,瑞利分布,对数正态分布)和回波模拟
2023/12/13 7:48:01 4KB 回波模拟
1
共 19 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡