STM32是一款基于ARMCortex-M内核的微控制器,广泛应用于嵌入式系统设计,尤其在工业控制、物联网设备等领域。
AD7606是一款高精度、多通道、同步采样模数转换器(ADC),适用于需要精确测量模拟信号的应用。
在本项目中,开发者使用STM32来控制和读取AD7606的数据,实现模拟信号的数字化处理。
我们需要了解AD7606的关键特性。
AD7606是16位、四通道、高速SARADC,提供单端或差分输入模式,具有高分辨率和宽动态范围。
它支持多种工作模式,如连续转换、单次转换和突发模式,可以通过SPI、I²C或并行接口与微控制器通信。
在STM32开发AD7606的过程中,主要涉及以下步骤:1.接口配置:STM32需要配置相应的GPIO口来连接AD7606的CS(片选)、SCK(时钟)、MISO(主设备输入,从设备输出)和MOSI(主设备输出,从设备输入)引脚,以及可能的INT(中断)引脚。
这些GPIO口需要设置为正确的输出/输入模式,并进行上下拉电阻、速度和推挽设置。
2.SPI/I²C初始化:根据选择的通信协议,初始化STM32的SPI或I²C外设。
这包括设置波特率、数据帧格式、时钟极性和相位等参数。
3.AD7606配置:通过SPI或I²C发送配置命令,设置AD7606的工作模式、采样速率、输入范围等参数。
这些配置可能需要特定的寄存器地址和值,需要查阅AD7606的数据手册来确定。
4.数据采集:在正确的时序下,启动AD7606的转换过程。
在转换完成后,通过SPI或I²C读取转换结果。
对于多通道ADC,需要循环遍历每个通道进行采样。
5.错误处理:检测并处理可能出现的错误,例如超时、CRC校验失败等。
同时,如果AD7606有中断功能,还需要设置中断处理函数来响应AD7606的转换完成或其他事件。
6.应用层处理:将获取的数字数据进行处理,如滤波、计算、存储或显示。
这可能涉及到数字信号处理技术,如滑动平均滤波、FIR滤波器等。
在实际项目中,代码会包含上述各步骤的具体实现,可能还会涉及中断服务程序、线程管理、定时器等功能。
通过调试和优化代码,可以确保STM32与AD7606之间的通信稳定可靠,满足系统的实时性和精度要求。
"STM32开发AD7606代码"涉及到STM32微控制器的GPIO配置、SPI/I²C通信、AD7606的初始化和数据采集等多个方面的知识。
通过这样的开发,可以构建一个高效、精确的模拟信号测量系统,服务于各种需要高精度模拟量数字化的场合。
2025/3/19 17:27:34 3KB AD7606. AD7606config
1
自动驾驶感知技术视觉感知技术发展本报告主要介绍面向自动驾驶的视觉感知技术。
首先是对自动驾驶视觉感知发展的行业综述,介绍了自动驾驶感知技术的发展路线,以及视觉传感器在其中的作用;
其次介绍了车载图像传感器的发展,包括新型的动态图像传感器、低照度感知能力、像素密度、动态范围以及其他面向自动驾驶应用的定制化特性;
最后介绍了视觉感知算法的发展,包括像素级语义分割及目标检测、基于视觉的定位与语义地图、传感器融合、视觉计算平台等。
2024/12/8 20:38:43 2.17MB 自动驾驶 视觉感知
1
详细的ADE7880中文使用手册,产品特性高精度;
支持IEC62053-21、IEC62053-22、IEC62053-23、EN50470-1、EN50470-3、ANSIC12.20和IEEE1459标准支持IEC61000-4-7I类和II类精度规格兼容三相三线或三相四线(三角形或Y形)及其它三相配置测量所有相位上2.8kHz通带范围内所有谐波的rms/有功/无功/视在功率、功率因数、THD和谐波失真测量零线电流上2.8kHz通带范围内所有谐波的rms和谐波失真TA=25°C时,在2000:1的动态范围内谐波电流和电压有效值、谐波有功和无功功率的误差小于1%测量各相及整个系统的总(基波和谐波)有功/视在功率和基波有功/无功功率TA=25°C时,在1000:1的动态范围内有功和基波无功功率误差小于0.1%;
TA=25°C时,在5000:1的动态范围内有功和基波无功功率误差小于0.2%TA=25°C时,在1000:1的动态范围内电压和电流有效值误差小于0.1%支持电池电源输入,可在全失压的情况下工作宽电源电压范围:2.4V至3.7V基准电压源:1.2V(典型漂移量为10ppm/°C)且具有外部过驱功能40引脚架构芯片级(LFCSP)无铅封装,与ADE7854、ADE7858、ADE7868和ADE7878引脚兼容
2024/12/8 9:16:36 1.75MB ADE7880 7880 中文手册 谐波
1
对数放大器实实质上就是一种对数变换器,是指输出信号幅值与输入信号幅值呈对数函数关系的基本放大电路。
在电子测量技术领域之中,某些信号的电压具有比较宽的动态范围,例如在雷达、声纳等无线电接受系统中,接收机前端信号动态范围可以达到120dB甚至更高。
一般的线性放大器不能处理这样宽的动态范围,为了更加方便的测试和分析这些信号,在线代测量接收机的设计中,采用大动态范围对数放大器设计技术。
本文介绍了一种核心器件为AD8306的大动态范围对数放大器的设计,实现了90dB的动态范围,宽带频率,灵敏度高。
采用该方法实现的对数放大器动态范围大,电路简单易于实现,如果采用多片芯片级联还可以实现更大动态范围的对数放大器。
实际应用表明,本文给出的设计方法合理有效,具有很高的使用价值。
1
提出一种基于一维线衍射光栅的焦斑重构和远场测量新方法,从理论上分析了新方法在拓展测量仪器动态范围、提取远场焦斑高频旁瓣信息的有效性及方法的适用条件。
基于实验室现有的一套远场测量系统平台及自行设计的一维线衍射光栅,以远场环围能量(PIB)曲线作为检验新方法有效性的指标,通过数值仿真和实验相结合考察了新方法的有效性,并从准确测量远场焦斑质量的角度探讨了不同减阈值的去噪方式对焦斑重构结果的影响,对结果进行了分析讨论。
2024/5/13 7:22:39 3.26MB 光栅 线衍射光 远场焦斑 CCD相机
1
提出一种融合多种特征的图像过曝光区域检测算法。
利用转换的亮度特征和颜色特征,并新引入亮颜特征和边界邻域特征来构成特征向量,用L2正则化逻辑非线性回归方法。
对实验图像进行过曝光区域检测,结果显着示,相较于亮度阈值法和采用亮度和​​颜色特征的常规检测方法,约会新特征后的改进算法检测出的过照射范围区域连通性更好。
1
本标准规定了雷达接收分系统的动态范围、镜像频率抑制度、增益、带宽的定义和测试方法。
2024/4/12 20:01:25 776KB 雷达 动态范围 频率抑制度 增益
1
接收技术是相控阵雷达最基本的技术之一。
本书全面分析了相控阵雷达通道接收技术、相参频率合成技术、波形产生和激励源技术,这三部分内容涵盖了完整的相控阵雷达接收技术,具体有:相控阵雷达对接收机性能的要求,接收机的构成和主要功能;
噪声的特性、来源,噪声系数及其测量方法和动态范围;
多通道接收、计算机辅助测试和接收机监控技术;
现代雷达中开始出现的数字接收技术;
相位噪声的特点,在时域和频域表征它的参数和术语,对它的测量方法以及它对雷达性能的影响;
基本的频率合成技术,特别详细地介绍了近年来出现的直接数字式频率合成技术;
雷达发射波形和激励信号产生技术;
相控阵雷达数字化接收技术的新进展。
.
2024/3/9 19:50:13 28.51MB 相控阵雷达技术丛书
1
提出一种基于红外图像分层处理及动态压缩的DDE算法。
该算法先将原始14bits红外图像数据信息中的大动态低频背景和小动态高频细节进行分离提取,并分别对提取的细节层和背景层进行相应的灰度增强和灰度抑制处理,再调整和压缩各图层的动态范围并最终合成8bits图像。
实验结果表明,该算法能较好地保留并突出原始红外图像中的边缘和细节信息,达到了预期设计的目标
2024/2/11 1:40:29 453KB 图像处理
1
设计出了一种用于光强检测的前置放大及量程自动转换电路。
许多光强信号放大电路仅追求高增益,忽略了对测量范围的考虑。
本文采用同轴尾纤型光电探测器把光强信号转换成光电流信号,精密截波稳定型运算放大器ICL7652把光电流信号转化为电压信号,量程转换电路74HC4052受单片机控制可在4个量程之间自动转换,通过调节暗电流补偿电路减小光电二极管暗电流所产生的影响。
仿真测试结果表明,电路参数选择合理、电路模块性能稳定,并且很好地降低了噪声的影响,设计的电路具有低噪声、高增益、高共模抑制比、失调小等优点,探测光强动态范围可达76dB。
1
共 24 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡