摘 要:高频功率放大器是发射机的重要组成部分,因而也是通信系统必不可少的环节。
介绍了高频功率放大器的基本原理和特性,并利用电子设计工具软件Multisim2001对丙类功率放大器电路从方案选择、单元电路设计、元器件参数选取等方面进行具体设计分析,同时对电路进行仿真测试,通过仿真结果分析电路特性,使电路得到进一步完善。
仿真结果表明,该电路设计方案正确,能达到预期设计要求,性能良好。
2024/9/24 18:19:41 322KB :高频功率放大器;Multisi m2001;仿真
1
功率放大器的输出信号相对于输入信号可能产生非线性失真,常采用在功放前设置一个预失真处理模块,使两个模块的合成总效果为整体输入-输出特性线性化。
2024/9/18 16:38:32 1.88MB 功率放大器
1
模电课程设计,关于音频功率放大器。
设计并制作一OCL音频功率放大器和与之匹配的直流稳压电源。
指标:PoM≥5W;
fL≤50Hz,fH≥15KHz;
中点电位≤100mV;
负载:8.2Ω;
输入电压50mV。
2024/8/31 2:19:42 312KB 模电 课程设计
1
飞思卡尔LDMOS(LaterallyDiffusedMetalOxideSemiconductor)功率管MRF9045N模型用于ADS的功率放大器的仿真。
2024/8/26 9:53:06 15.22MB 飞思卡尔 ADS模型
1
第五届2001年全国大学生电子设计竞赛获奖作品选编包含波形发生器、自动往返小车、高效率音频功率放大器、简易数字存储示波器、数字采集与传输系统参加2009年电子设计大赛必备的参考资料
1
学习设计功率放大器需要参考徐兴福老师著《ADS2011射频电路设计与仿真实例》,书中是用飞思卡尔的LDMOS功率管MRF8P9040N设计放大器,随着ADS版本的更新,ADS2016不能调出MRF8P9040N进行仿真设计。
这里提供了适合2016版本的飞思卡尔ADS2016控件以及MRF8P9040N模型库。
通过在ADS2016软件里解压控件以及模型库,就可调出MRF8P9040N模型进行原理图设计以及仿真!
2024/8/15 4:36:53 3.78MB ADS2016 MRF8P9040N PA
1
这本被誉为射频集成电路设计的指南书全面深入地介绍了设计千兆赫兹(GHz)CMOS射频集成电路的细节。
本书首先简要介绍了无线电发展史和无线系统原理;
在回顾集成电路元件特性、MOS器件物理和模型、RLC串并联和其他振荡网络以及分布式系统特点的基础上,介绍了史密斯圆图、S参数和带宽估计技术;
着重说明了现代高频宽带放大器的设计方法,详细讨论了关键的射频电路模块,包括低噪声放大器(LNA)、基准电压源、混频器、射频功率放大器、振荡器和频率综合器。
对于射频集成电路中存在的各类噪声及噪声特性(包括振荡电路中的相位噪声)进行了深入的探讨。
本书最后考察了收发器的总体结构并展望了射频电路未来发展的前景。
2024/8/12 5:42:20 24.44MB 射频入门书籍
1
本课程设计是做的实物图,主要功能是实现音频功能放大器。
本设计报告是我个人设计的。
2024/7/30 21:18:01 1.12MB 音频功率放大器课程设计报告
1
要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,效率>60﹪,失真小。
音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。
音频频率范围约为20Hz~20kHz,因此放大器必须在此频率范围内具有良好的频率响应。
2024/7/7 10:47:23 280KB 模拟电子课程设计
1
386D音频功率放大器主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但是在1脚和8脚之间增加一只外接的电阻和电容,便可将电压增益调为任意值,直至200。
输入端以地为参考,同时输出端被自动偏置到电源电压的一半。
在6V电源电压下,它的静态功耗仅为24mW,使得386D特别适合于电池供电的场合。
386D的封装形式为DIP8特点:z静态功耗低,约为4mA,可用电池供电z电压增益由20~200可调z电源电压范围宽,Vcc=4~12Vz外围元件少z失真度低应用范围zAM/FM收音机音频放大器z线驱动器z便携式录音机音频功率放大器z超声波驱动器z免提电话机扬声系统z小型伺服驱动器z电视机音频系统z电源变换器
2024/6/17 11:29:01 1.73MB 386D 低压音频 功率放大器 PDF
1
共 53 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡