机械设计课程设计-设计带式输送机传动装置内容很全,很辛苦才弄到的连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。
运输速度允许误差为。
课程设计内容1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
1
光线投射算法的体绘制应,光线投射算法代码,及应用
2025/3/27 6:48:05 7.98MB 光线投射算法
1
多进制数字频率调制(MFSK)简称多频制,是2FSK方式的推广。
它是用不同的载波频率代表种数字信息。
多进制频键控(MFSK)的基本原理和2FSK是相同的,其调制可以用频率键控法(频率选择法)和模拟的调频法来实现,不同之处在于使用键控法时其供选的频率有M个,选择逻辑电路也比较复杂。
2025/3/21 16:48:50 171KB MATLAB
1
STM32AD7606控制方法代码主要涉及了嵌入式系统中微控制器STM32与高精度模数转换器AD7606的交互技术。
STM32是基于ARMCortex-M内核的微控制器,广泛应用于各种嵌入式硬件设计中,而AD7606是一款16位、8通道同步采样模拟到数字转换器,常用于工业自动化、医疗设备和测试测量系统等需要高精度信号采集的场合。
在STM32与AD7606的通信中,一般采用SPI(SerialPeripheralInterface)或I2C接口。
SPI是一种高速、全双工、同步串行通信协议,适合短距离高速数据传输;
I2C则是一种多主机、双向两线制的总线协议,适合连接低速外设,但数据速率较低。
由于AD7606支持这两种通信模式,开发人员可以根据实际需求选择合适的接口。
1.**SPI配置**:需要在STM32的HAL库或LL库中初始化SPI接口,包括设置时钟源、时钟频率、数据帧格式、极性和相位等参数。
例如,可以配置SPI工作在主模式,数据从MISO引脚接收,MOSI引脚发送,通过NSS引脚实现片选。
2.**AD7606配置**:在初始化过程中,需要设置AD7606的工作模式,如单端或差分输入、增益、采样率等。
这些配置通常通过SPI或I2C发送特定的命令字节来完成。
3.**读写操作**:STM32通过SPI或I2C向AD7606发送读/写命令。
写操作可能涉及设置转换器的寄存器,比如配置采样率、启动转换等。
读操作则会获取转换后的数字结果。
在SPI中,通常需要在读写操作之间插入一个空时钟周期(dummybit)来正确同步数据的传输。
4.**中断处理**:在连续转换模式下,AD7606可能会生成中断请求,通知STM32新的转换结果已准备好。
STM32需要设置中断服务函数,处理中断请求并读取转换结果。
5.**数据处理**:读取的转换结果通常为二进制码,需要进行相应的转换,如左对齐或右对齐,然后根据AD7606的参考电压计算实际的模拟电压值。
6.**电源管理**:AD7606可能有低功耗模式,可以通过控制命令进入或退出。
在不需要转换时,关闭ADC以节省能源。
7.**错误检测**:程序中应包含错误检测机制,例如检查CRC校验或超时,以确保数据的完整性和系统的稳定性。
8.**代码实现**:在实际的代码实现中,可以使用HAL或LL库提供的函数进行硬件抽象,简化编程。
例如,`HAL_SPI_TransmitReceive()`函数可用于发送和接收SPI数据,`HAL_Delay()`用于控制延时,以及`HAL_ADC_Start()`和`HAL_ADC_PollForConversion()`用于启动转换和等待转换完成。
在项目中,开发者通常会创建一个AD7606的驱动库,封装上述操作,以方便其他模块调用。
这个驱动库可能包括初始化函数、配置函数、读取转换结果的函数等,使得系统设计更加模块化和易于维护。
通过理解这些知识点,并结合提供的AD7606压缩包中的代码,你可以实现STM32对AD7606的精确控制,从而进行高精度的模拟信号采集和处理。
2025/3/19 17:28:35 78KB stm32 arm 嵌入式硬件
1
本软件是一个QT平台的USB调试助手,可以与自定义的USB设备通信,支持手动输入PID和VID码,可16进制或者ASCII码显示收到的USB数据,可设置16进制和ASCII码发送USB数据,自定义USB设备建议使用libusb生成通用USB驱动!作者已经测试过和自定义USB设备通信,数据收发完成正常!
2025/3/11 20:22:16 15.12MB USB调试助手 USB上位机
1
html开发的一大专网站!很漂亮!很合适交网页制做课的作业!
2025/3/11 8:12:56 1.12MB html 学校网站 网页制做
1
一个Linux下的图形化的串口调试工具。
使用GTK编程实现:1) 串口基本收发2) 串口配置(串口,速率,数据位,停止位,奇偶校验,数据控制)3) 串口配置的保存和载入(串口,速率,数据位,停止位,奇偶校验,数据控制)4) 串口HEX显示接收数据5) 串口接收数据和发送数据的计数显示(按字节)6) 串口接收数据的捕获(捕获到固定文件,但可以是追加捕获或是覆盖捕获)7) 文件发送(选择指定文件去发送)8) 串口HEX发送(以16进制的方式发送输入字符)9) 连续定时间间隔发送数据,发送间隔时间可以自己设置10) 面板托盘显示(可以隐藏或显示)11) 终端控制功能(像minicom那样可以直接在终端输入进行响应)12) 可配置默认启动参数.配置后以后启动则以默认启动参数打开串口13) 本地回显.
2025/3/4 22:42:50 474KB linux 串口 调试 源码
1
本VI实现十进制字符串强制转换为16进制字符串,即输入10进制的0CDA可输出16进制的0CDA
2025/3/4 7:14:32 13KB labview; 16进制;
1
前言1引言11.1什么是操作系统?31.1.1所有延长机器的作业系统41.1.2作为一个资源管理器的作业系统61.2操作系统的历史71.2.1第一代(1945年至1955年)真空管71.2.2第二代(1955年至1965年)晶体管和批处理系统81.2.3第三代(1965年至1980年)的集成电路101.24第四代(1980年至今)个人电脑151.3计算机硬件检查19l.3.1处理器191.3.2内存231.3.3磁盘261.3.4胶带271.3.5I/O设备27(I/O即输入输出)1.3.6总线3013.7启动计算机331.4操作系统动物园331.4.1大型机操作系统341.4.2服务器操作系统341.4.3多处理器的操作系统341.4.4个人电脑操作系统351.4.5掌上电脑操作系统351.4.6嵌入式操作系统.351.4.7传感器节点的操作系统361.4.8实时操作系统361.4.9智能卡操作系统371.5操作系统的概念371.5.1流程381.5.2地址空间401.5.3文件401.5.4输入/输出431.5.5保护441.5.6壳牌441.5.7系统发育个体发育重演461.6系统调用491.6.1流程管理系统调用521.6.2文件管理系统调用561.6.3目录管理系统调用571.6.4杂项系统调用581.6.5在Windows的Win32API591.7操作系统结构621.7.1单片系统621.7.2分层系统631.7.3微内核641.7.4客户-服务器模型671.7.5虚拟机671.7.6出的内核711.8根据C的WORLD721.8.1C语言721.8.2头文件731.8.3大的编程项目741.8.4运行时模型751.9操作系统上的研究761.10本书的其余部分的概要771.11公制单位781.12概要792进程和线程2.1工序832.1.1过程模型842.1.2进程创建862.1.3进程终止882.1.4流程层次结构892.1.5进程国家902.1.6实施流程912.1.7多多建模的建模932.2螺纹952.2.1线程使用情况952.2.2古典的线程模型1002.2.3POSIX线程1042.2.4在用户空间中实现的线程1062.2.5在内核中实现的线程1092.2.6混合实现1102.2.7调度激活1112.2.8弹出式线程1122.2.9使单线程代码中使用多线程技术1142.3进程间通信1172.3.1静态条件1172.3.2关键区域1192.3.3忙等待的互斥1202.3.4睡眠和唤醒1252.3.5信号灯1282.3.6互斥1302.3.7显示器1342.3.8消息传递1402.3.9壁垒1442.4调度1452.4.1调度1452.4.2批处理系统的调度1522.4.3调度互动系统1542.4.4调度实时系统1602.4.5政策与机制1612.4.6线程调度1622.5经典的IPC问题1632.5.1哲学家就餐问题1642.5.2读者和作者的问题1672.6进程和线程的研究1682.7概要169习题95  第3章存储管理99  3.1无存储器抽象99  3.2一种存储器抽象:地址空间101  3.2.1地址空间的概念101  3.2.2交换技术103  3.2.3空闲内存管理104  3.3虚拟内存106  3.3.1分页107  3.3.2页表108  3.3.3加速分页过程109  3.3.4针对大内存的页表111  3.4页面置换算法113  3.4.1最优页面置换算法114  3.4.2最近未使用页面置换算法114  3.4.3先进先出页面置换算法115  3.4.4第二次机会页面置换算法115  3.4.5时钟页面置换算法116  3.4.6最近最少使用页面置换算法116  3.4.7用软件模拟lru117  3.4.8工作集
2025/2/26 1:24:41 84.5MB 操作系统
1
STM32是一款基于ARMCortex-M内核的微控制器,广泛应用于嵌入式系统设计中,尤其是在传感器接口和控制领域。
FXAS21002是一款高性能的数字陀螺仪,适用于各种动态应用,如航姿参考系统、运动检测以及游戏控制等。
在使用FXAS21002与STM32进行通信时,由于某些情况下硬件I2C接口可能不适用或已满载,开发者会选择使用软件模拟I2C(也称为bit-banging)来实现通信。
I2C(Inter-IntegratedCircuit)是一种多主控、双向二线制总线协议,用于连接微控制器和其他设备,如传感器、存储器等。
在模拟I2C中,STM32通过GPIO引脚来模拟SCL(时钟)和SDA(数据)信号,从而实现与FXAS21002的通信。
STM32的模拟I2C实现需要编写特定的中断服务程序和状态机,以确保正确地生成I2C时序。
这包括起始条件、停止条件、数据传输和应答/非应答信号的生成。
为了与FXAS21002进行有效通信,你需要设置STM32的GPIO引脚为推挽输出模式,并在适当的时机切换它们的状态以模拟I2C信号。
FXAS21002陀螺仪提供了多种工作模式,包括单轴、双轴和三轴测量,以及不同的数据速率和电源管理模式。
在配置陀螺仪之前,需要通过I2C发送特定的寄存器地址和配置字节。
例如,可以设置陀螺仪的测量范围、低通滤波器配置、数据输出速率等。
在测试程序中,通常会包含初始化序列,用于配置STM32的GPIO和定时器(用于生成I2C时钟),然后是读写FXAS21002寄存器的函数。
读取陀螺仪的数据后,可以通过ADC转换将模拟信号转化为数字值,再进行相应的计算,如角度速度解算。
FXAS21002陀螺仪的数据手册(如PDF文档"FXAS21002【陀螺仪】.pdf")会提供详细的寄存器映射、命令集和操作指南。
开发者需要熟悉这些信息,以便正确地配置和读取陀螺仪数据。
在实际应用中,可能还需要考虑噪声处理、温度补偿、校准算法等高级话题,以提高测量精度和稳定性。
总的来说,STM32模拟I2C与FXAS21002陀螺仪的交互是一个涉及硬件接口、通信协议和传感器数据处理的综合过程。
通过深入理解I2C协议、FXAS21002的特性以及STM32的GPIO和定时器功能,开发者可以构建出可靠且高效的陀螺仪测试程序。
2025/2/14 2:44:28 3.81MB
1
共 361 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡