本实例完成RTX与Windows进程通信,包含两个工程:1、WindowsMFC程序,创建共享内存,并可完成对共享内存的读写操作;
2、RTX进程通过读共享内存完成通信。
开发环境:MSVS2005。
参考资料:RTXHelp文档。
推荐资料:博客http://wzhyblog.yo2.cn/articles/tag/rtx
2025/2/9 15:30:05 7.74MB RTX Windows 进程通信 共享内存
1
动态数据交换DDE(DynamicDataExchange)是在Windows平台上不同应用程序之间共享数据的一个通信协议,DDE技术使用共享内存来实现应用程序之间实时交换数据和发送指令,以及使用DDE协议获得传递数据的同步。
因此可以通过DDE协议将组态王与MATLAB结合起来。
2025/1/29 10:16:08 510B DDE
1
压缩包中包括linux和windows的程序源代码及实验报告消费者和生产者问题如下:• 一个大小为3的缓冲区,初始为空• 2个生产者– 随机等待一段时间,往缓冲区添加数据,– 若缓冲区已满,等待消费者取走数据后再添加– 重复6次• 3个消费者– 随机等待一段时间,从缓冲区读取数据– 若缓冲区为空,等待生产者添加数据后再读取– 重复4次说明:• 显示每次添加和读取数据的时间及缓冲区的状态• 生产者和消费者用进程模拟,缓冲区用共享内存来实现
2025/1/27 12:17:28 706KB 消费者 生产者 代码 实验报告
1
自己花钱买的电子书,高清完整版!很实用的教材,读起来一点也不晦涩。
目录译者序前言第1章概论1.1推动因素1.2基本计算机组成1.3分布式系统的定义1.4我们的模型1.5互连网络1.6应用与标准1.7范围1.8参考资料来源参考文献习题第2章分布式程序设计语言2.1分布式程序设计支持的需求2.2并行/分布式程序设计语言概述2.3并行性的表示2.4进程通信与同步2.5远程过程调用2.6健壮性第3章分布式系统设计的形式方法3.1模型的介绍3.1.1状态机模型3.1.2佩特里网3.2因果相关事件3.2.1发生在先关系3.2.2时空视图3.2.3交叉视图3.3全局状态3.3.1时空视图中的全局状态3.3.2全局状态:一个形式定义3.3.3全局状态的“快照”3.3.4一致全局状态的充要条件3.4逻辑时钟3.4.1标量逻辑时钟3.4.2扩展3.4.3有效实现3.4.4物理时钟3.5应用3.5.1一个全序应用:分布式互斥3.5.2一个逻辑向量时钟应用:消息的排序3.6分布式控制算法的分类3.7分布式算法的复杂性第4章互斥和选举算法4.1互斥4.2非基于令牌的解决方案4.2.1Lamport算法的简单扩展4.2.2Ricart和Agrawala的第一个算法4.2.3Maekawa的算法4.3基于令牌的解决方案4.3.1Ricart和Agrawala的第二个算法4.3.2一个简单的基于令牌环的算法4.3.3一个基于令牌环的容错算法4.3.4基于令牌的使用其他逻辑结构的互斥4.4选举4.4.1Chang和Roberts的算法4.4.2非基于比较的算法4.5投标4.6自稳定第5章死锁的预防、避免和检测5.1死锁问题5.1.1死锁发生的条件5.1.2图论模型5.1.3处理死锁的策略5.1.4请求模型5.1.5资源和进程模型5.1.6死锁条件5.2死锁预防5.3一个死锁预防的例子:分布式数据库系统5.4死锁避免5.5一个死锁避免的例子:多机器人的灵活装配单元5.6死锁检测和恢复5.6.1集中式方法5.6.2分布式方法5.6.3等级式方法5.7死锁检测和恢复的例子5.7.1AND模型下的Chandy,Misra和Hass算法5.7.2AND模型下的Mitchell和Merritt算法5.7.3OR模型下的Chandy,Misra和Hass算法第6章分布式路由算法6.1导论6.1.1拓扑6.1.2交换6.1.3通信类型6.1.4路由6.1.5路由函数6.2一般类型的最短路径路由6.2.1Dijkstra集中式算法6.2.2Ford的分布式算法6.2.3ARPAnet的路由策略6.3特殊类型网络中的单播6.3.1双向环6.3.2网格和圆环6.3.3超立方6.4特殊类型网络中的广播6.4.1环6.4.22维网格和圆环6.4.3超立方6.5特殊类型网络中的组播6.5.1一般方法6.5.2基于路径的方法6.5.3基于树的方法第7章自适应、无死锁和容错路由7.1虚信道和虚网络7.2完全自适应和无死锁路由7.2.1虚信道类7.2.2逃逸信道7.3部分自适应和无死锁路由7.4容错单播:一般方法7.52维网格和圆环中的容错单播7.5.1基于局部信息的路由7.5.2基于有限全局信息的路由7.5.3基于其他故障模型的路由7.6超立方中的容错单播7.6.1基于局部信息的模型7.6.2基于有限全局信息的模型:安全等级7.6.3基于扩展安全等级模型的路由:安全向量7.7容错广播7.7.1一般方法7.7.2使用全局信息的广播7.7.3使用安全等级进行广播7.8容错组播7.8.1一般方法7.8.2基于路径的路由7.8.3使用安全等级在超立方中进行组播第8章分布式系统的可靠性8.1基本模型8.2容错系统设计的构件模块8.2.1稳定存储器8.2.2故障-停止处理器8.2.3原子操作8.3节点故障的处理8.3.1向后式恢复8.3.2前卷式恢复8.4向后恢复中的问题8.4.1检查点的存储8.4.2检查点方法8.5处理拜占庭式故障8.5.1同步系统中的一致协议8.5.2对一个发送者的一致8.5.3对多个发送者的一致8.5.4不同模型下的一致8.5.5对验证消息的一致8.6处理通信故障8.7处理软件故障第9章静态负载分配9.1负载分配的分类9.2静态负载分配9.2.1处理器互连9.2.2任务划分9.2.3任务分配9.3不同调度模型概述9.4基于任务优先图的任务调度9.5案例学习:两种最优调度算法9.6基于任务相互关系图的任务调度9.7案例学习:域划分9.8使用其他模型和目标的调度9.8.1网络流量技术:有不同处理器能力的任务相互关系图9.8.2速率单调优先调度和期限驱动调度:带实时限制的定期任务9.8.3通过任务复制实现故障安全调度:树结构的任务优先图9.9未来的研究方向第10章动态负载分配10.1动态负载分配10.1.1动态负载分配的组成要素10.1.2动态负载分配算法10.2负载平衡设计决策10.2.1静态算法对动态算法10.2.2多样化信息策略10.2.3集中控制算法和分散控制算法10.2.4移植启动策略10.2.5资源复制10.2.6进程分类10.2.7操作系统和独立任务启动策略10.2.8开环控制和闭环控制10.2.9使用硬件和使用软件10.3移植策略:发送者启动和接收者启动10.4负载平衡使用的参数10.4.1系统大小10.4.2系统负载10.4.3系统交通强度10.4.4移植阈值10.4.5任务大小10.4.6管理成本10.4.7响应时间10.4.8负载平衡视界10.4.9资源要求10.5其他相关因素10.5.1编码文件和数据文件10.5.2系统稳定性10.5.3系统体系结构10.6负载平衡算法实例10.6.1直接算法10.6.2最近邻居算法:扩散10.6.3最近邻居算法:梯度10.6.4最近邻居算法:维交换10.7案例学习:超立方体多计算机上的负载平衡10.8未来的研究方向第11章分布式数据管理11.1基本概念11.2可串行性理论11.3并发控制11.3.1基于锁的并发控制11.3.2基于时戳的并发控制11.3.3乐观的并发控制11.4复制和一致性管理11.4.1主站点方法11.4.2活动复制11.4.3选举协议11.4.4网络划分的乐观方法:版本号向量11.4.5网络分割的悲观方法:动态选举11.5分布式可靠性协议第12章分布式系统的应用12.1分布式操作系统12.1.1服务器结构12.1.2八种服务类型12.1.3基于微内核的系统12.2分布式文件系统12.2.1文件存取模型12.2.2文件共享语义12.2.3文件系统合并12.2.4保护12.2.5命名和名字服务12.2.6加密12.2.7缓存12.3分布式共享内存12.3.1内存相关性问题12.3.2Stumm和Zhou的分类12.3.3Li和Hudak的分类12.4分布式数据库系统12.5异型处理12.6分布式系统的未来研究方向附录DCDL中的通用符号列表
2024/12/20 22:56:08 29.64MB 分布式系统设计 jie wu著 高传善
1
这是一个基于qt5的共享内存QSharememory的测试程序.在win下面编译,自己写的,可以实现不同的应用程序中IPC通信,封装了一个类,非常方便使用。
//具体的测试方法是,运行程序,弹出一个dialog.5个按钮,两列,左边一列是设置共享内存,//右边一列是读取共享内存,左右是对应的,先点击左边的,点击一次之后,内存设置了。
//然后点击右边的按钮,或者其他应用程序也可以读取这个程序的内存。
整个工程开源,打包,编译即可测试,也可以编译成两个独立的应用程序测试。
同时支持跨平台,在linux下面测试过。
侵入式版本linux也可用
1
跨平台/全局/消息队列/共享内存/信号量/自动解锁//1个进程读,1个进程写//windows1000万条19秒//linux1000万条3秒//1个进程读,2个进程写//windows2000万条80秒//linux2000万条23秒//linux编译测试,加1个参数与不加参数来区分读写队列//g++-ot-DMESSAGE_QUEUE_TRACEMessageQueueMain.cpp-lpthread&&./t-r//清理消息队列编译命令//g++-ot-DMESSAGE_QUEUE_TRACE-DMESSAGE_QU
2024/12/7 17:04:44 25KB 跨平台 消息队列 共享内存 信号量
1
关于MPI、并行计算的总结对比,目录如下:1.并行计算1.1.相关背景1.2.什么是并行计算1.3.主要目的1.4.并行计算与分布式计算1.5.并行的基本条件1.6.主要的并行系统1.6.1.共享内存模型1.6.2.消息传递模型1.6.3.数据并行模型1.6.4.对比分析2.MPI2.1.什么是MPI2.2.MPI的实现2.3.MPI基本函数2.4.MPI功能特点2.5.技术对比分析2.5.1.共享内存模型(以OpenMP为例)2.5.2.分布式内存模型2.6.小结3.问题解释3.1.并行计算和MPI是什么关系?为了实现并行计算,是否使用MPI技术即可实现?3.2.MPI技术原理是什么,即基础设施提供什么样的支持能力?3.3.为了实现并行计算,应用软件需要什么样的特殊设计3.4.什么样的软件需要并行计算4.部分参考资料
2024/11/16 2:14:47 669KB MPI 并行计算 分布式计算
1
共四项内容:Linux进程控制、线程同步与通信、共享内存与进程同步、Linux文件目录操作,参考报告详见:http://www.doc88.com/p-8189118756167.html
2024/10/10 12:20:14 63KB 操作系统 linux
1
通过共享内存优化,高效地查找一个序列中的最大值并将该最大值放到序列的第一个元素位置。
同时,不同于传统的利用线程和数组序号对应的方式,本算法利用连续的线程进行计算,更有利于算法的并发性
2024/9/4 19:52:11 2KB CUDA 最大值 并行 GPU
1
两个EXE之间共享内存传递数据,喜欢的DELPHI的朋友可以下载学习下
2024/8/24 4:21:26 404KB DELPHI  内存映射
1
共 49 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡