全国各省人口、面积矢量文件,简化版,文档较小,包括北京54和wgs84不同坐标系下版本各一个
2024/9/12 16:07:28 806KB 矢量文件
1
我国于一九九零年七月进行了第四次全国人口普查的登记工作。
主要数据包括全国及各省区的总人口、家庭户人口、民族构成、各种文化程度人口、人口的出生率、死亡率以及自然增长率和市镇总人口等。
2024/6/2 5:24:30 29.86MB 1990年第
1
空间可视化的全国人口和GDP矢量数据,可用于多行业多学科可视化阐发。
2019/4/5 8:53:09 30.81MB 人口、GDP
1
可以通过Arcgis打开,全国人口空间分布公里网格数据是在全国分县人口统计数据的基础上,考虑人口-自然要素的地理分异规律,通过空间插值生成的1km*1km栅格数据,每个栅格的值为该平方公里的人口数。
该数据集打破县级/市级行政统计单元的限制,将社会经济数据展布到每个1平方公里的栅格上,为基于地理单元的资源生态环境分析评价,以及区域生态环境灾祸的影响评价提供了更精细的数据基础。
2021/9/18 21:13:29 36.52MB 人口 全国 栅格
1
本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。
最后提出了有关人口控制与管理的措施。
模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。
得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。
运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。
模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;
然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的Leslie模型。
首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;
预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。
其次,对人口老龄化问题、人口抚养比进行分析。
得到我国老龄化在加速,预计本世纪40年代中后期构成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;
65岁以上老年人口达3.51亿人,比重达25.53%;
人口抚养呈现增加的趋势。
再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。
最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡