在生命科学领域中,人们已经对遗传(Heredity)与免疫(Immunity)等自然现象进行了广泛深入的研究。
六十年代Bagley和Rosenberg等先驱在对这些研究成果进行分析与理解的基础上,借鉴其相关内容和知识,特别是遗传学方面的理论与概念,并将其成功应用于工程科学的某些领域,收到了良好的效果。
时至八十年代中期,美国Michigan大学的Hollan教授不仅对以前的学者们提出的遗传概念进行了总结与推广,而且给出了简明清晰的算法描述,并由此形成目前一般意义上的遗传算法(GeneticAlgorithm)GA。
由于遗传算法较以往传统的搜索算法具有使用方便、鲁棒性强、便于并行处理等特点,因而广泛应用于组合优化、结构设计、人工智能等领域。
另一方面,Farmer和Bersini等人也先后在不同时期、不同程度地涉及到了有关免疫的概念。
遗传算法是一种具有生成+检测(generateandtest)的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
然而,在对算法的实施过程中不难发现两个主要遗传算子都是在一定发生概率的条件下,随机地、没有指导地迭代搜索,因此它们在为群体中的个体提供了进化机会的同时,也无可避免地产生了退化的可能。
在某些情况下,这种退化现象还相当明显。
另外,每一个待求的实际问题都会有自身一些基本的、显而易见的特征信息或知识。
然而遗传算法的交叉和变异算子却相对固定,在求解问题时,可变的灵活程度较小。
这无疑对算法的通用性是有益的,但却忽视了问题的特征信息对求解问题时的辅助作用,特别是在求解一些复杂问题时,这种忽视所带来的损失往往就比较明显了。
实践也表明,仅仅使用遗传算法或者以其为代表的进化算法,在模仿人类智能处理事物的能力方面还远远不足,还必须更加深层次地挖掘与利用人类的智能资源。
从这一点讲,学习生物智能、开发、进而利用生物智能是进化算法乃至智能计算的一个永恒的话题。
所以,研究者力图将生命科学中的免疫概念引入到工程实践领域,借助其中的有关知识与理论并将其与已有的一些智能算法有机地结合起来,以建立新的进化理论与算法,来提高算法的整体性能。
基于这一思想,将免疫概念及其理论应用于遗传算法,在保留原算法优良特性的前提下,力图有选择、有目的地利用待求问题中的一些特征信息或知识来抑制其优化过程中出现的退化现象,这种算法称为免疫算法(ImmuneAlgorithm)IA。
下面将会给出算法的具体步骤,证明其全局收敛性,提出免疫疫苗的选择策略和免疫算子的构造方法,理论分析和对TSP问题的仿真结果表明免疫算法不仅是有效的而且也是可行的,并较好地解决了遗传算法中的退化问题。
1
基于matlab程序,对解决物流选址问题有很大的帮助
2025/7/10 4:54:19 202KB matlab
1
《MATLAB智能算法30个案例分析》是作者多年从事算法研究的经验总结。
书中所有案例均因国内各大MATLAB技术论坛网友的切身需求而精心设计,其中不少案例所涉及的内容和求解方法在国内现已出版的MATLAB书籍中鲜有介绍。
《MATLAB智能算法30个案例分析》采用案例形式,以智能算法为主线,讲解了遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现。
2025/5/8 21:55:58 152.64MB MATLAB
1
人工免疫算法,用于计算函数的极值问题,收敛性极佳,迭代不到10次就可以找到最优解,而且与理论解完全吻合
2025/5/8 15:31:25 2KB AIA
1
基于matlab编写的人工免疫算法求解TSP问题,AIS.m为程序的主入口
2025/1/15 3:54:53 16KB 人工免疫算法 TSP
1
1基于遗传算法的TSP算法(王辉)2基于遗传算法和非线性规划的函数寻优算法(史峰)3基于遗传算法的BP神经网络优化算法(王辉)4设菲尔德大学的MATLAB遗传算法工具箱(王辉)5基于遗传算法的LQR控制优化算法(胡斐)6遗传算法工具箱详解及应用(胡斐)7多种群遗传算法的函数优化算法(王辉)8基于量子遗传算法的函数寻优算法(王辉)9多目标Pareto最优解搜索算法(胡斐)10基于多目标Pareto的二维背包搜索算法(史峰)11基于免疫算法的柔性车间调度算法(史峰)12基于免疫算法的运输中心规划算法(史峰)13基于粒子群算法的函数寻优算法(史峰)14基于粒子群算法的PID控制优化算法(史峰)15基于混合粒子群算法的TSP寻优算法(史峰)16基于动态粒子群算法的动态环境寻优算法(史峰)17粒子群算法工具箱(史峰)18基于鱼群算法的函数寻优算法(王辉)19基于模拟退火算法的TSP算法(王辉)20基于遗传模拟退火算法的聚类算法(王辉)21基于模拟退火算法的HEV能量管理策略参数优化(胡斐)22蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊)23基于蚁群算法的二维路径规划算法(史峰)24基于蚁群算法的三维路径规划算法(史峰)25有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊)26有导师学习神经网络的分类——鸢尾花种类识别(郁磊)27无导师学习神经网络的分类——矿井突水水源判别(郁磊)28支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊)29支持向量机的回归拟合——混凝土抗压强度预测(郁磊)30极限学习机的回归拟合及分类——对比实验研究(郁磊)
2025/1/13 3:54:45 1.92MB 算法 机器学习 matlab
1
计算机免疫学PDF版,带目录书签,方便阅读计算机免疫学基本原理、免疫算法、免疫模型
2024/12/6 2:03:22 7.79MB 计算机免疫学
1
基于c语言的人工免疫算法的源程序,PDF格式的,内容详尽
2024/10/6 4:35:21 115KB 遗传 免疫算法 C
1
受克隆选择理论和免疫网络模型的启发,我们提出了一种新的人工免疫算法,称为免疫记忆克隆算法(IMCA)。
首先讨论了受免疫系统启发的克隆操作员。
IMCA包括两个基于不同免疫记忆机制的版本;
它们是自适应免疫记忆克隆算法(AIMCA)和免疫记忆克隆策略(IMCS)。
在AIMCA中,每种抗体的突变率和存储单位大小会动态调整。
IMCS同时实现抗体种群和存储单元的进化。
通过使用克隆选择运算符,可以将全局搜索与局部搜索有效地结合在一起。
根据抗体-抗体(Ab-Ab)亲和力和抗体-抗原(Ab-Ag)亲和力,IMCA可以自适应地分配存储单元的大小和抗体群体。
在实验中,使用了18个多维函数,维数范围从2到1000,以及组合优化问题,例如旅行商和背包问题(KPs),以验证IMCA的性能。
给出了每次迭代的计算成本。
实验结果表明,IMCA具有较高的收敛速度,并且在增强种群多样性和一定程度上避免过早收敛方面具有很强的能力。
从理论上讲,IMCA以概率1收敛。
2010高等教育出版社和施普林格出版社柏林海德堡。
2024/8/4 1:19:22 807KB Artificial Immune System ;
1
详细介绍了神经网络算法、粒子群算法、遗传算法、模糊逻辑控制、免疫算法、蚁群算法、小波分析算法及其MATLAB的实现方式等内容;
第二部分详细介绍了智能算法的工程中的应用问题,包括模糊神经网络在工程中的应用、遗传算法在图像处理中的应用、神经网络在参数估计中的应用、基于智能算法的PID控制和智能算法的综合应用等
1
共 32 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡