汽车用多媒体塑料光纤网络
2025/12/21 19:21:26 353KB 论文
1
OceanStor_SNS2120&5120_光纤交换机_产品文档-(V100R001_06)
2025/12/19 10:16:14 15.18MB 光纤交换机
1
对光纤激光器相干合成系统中组束误差对远场光场分布的影响进行了数值研究,分析了输出单元占空比、位置误差和平行度误差对远场光场分布的影响。
结果表明,输出单元占空比的增加只能提高中心光斑的能量,但无法改变中心光斑的平均光强;而位置误差会使远场光场中的旁瓣能量减弱,降低光纤激光器相干合成系统的转换效率。
分析发现,位置误差的这种影响可以通过增加输出单元的占空比来减弱。
最后,通过分析平行度误差对远场光场的影响,对光纤激光器相干合成系统中的平行度误差控制提出了建议。
2025/12/18 9:03:52 3.36MB 激光器 光纤激光 相干合成
1
光纤通信课后习题答案,这里面解释的很详细啊!
2025/11/19 6:16:31 224KB 光纤通信
1
摘要:长周期光纤光栅有着很广泛的应用前景,关于长周期光纤光栅的理论分析也很成熟,而具体如何实现其传输谱特性的仿真却报道很少。
文中基于耦合模理论和简化的阶跃折射率单模光纤三层模型的包层模理论,提出了长周期光纤光栅的传输谱特性仿真的主要步骤及程序实现,为长周期光纤光栅的数值仿真提供了一种简便的方法。
同时,由于实验中采用,-./-0逐点写入法或幅度掩模法制作长周期光栅,故而对矩形折射率调制光栅进行了详细的理论分析,并利用上述提出的仿真程序进行了数值仿真,为实验中写入光纤光栅奠定基础。
2025/11/17 21:04:26 354KB 长周期光纤光栅 传输谱 MATLAB 仿真
1
新型光纤混沌同步系统中双向远距离混沌通信性能的仿真
2025/11/11 3:21:55 1.47MB 研究论文
1
单波长拉曼光纤放大增益谱。
单波长拉曼光纤放大增益谱。
单波长拉曼光纤放大增益谱。
2025/11/9 0:49:14 6KB matlab 拉曼光纤放大
1
Thisbookprovidesacomprehensiveaccountoffiber-opticcommunicationsystems.The3rdeditionofthisbookisusedworldwideasatextbookinmanyuniversities.This4theditionincorporatesrecentadvancesthathaveoccurred,inparticulartwonewchapters.Onedealswiththeadvancedmodulationformats(suchasDPSK,QPSK,andQAM)thatareincreasinglybeingusedforimprovingspectralefficiencyofWDMlightwavesystems.Thesecondchapterfocusesonnewtechniquessuchasall-opticalregenerationthatareunderdevelopmentandlikelytobeusedinfuturecommunicationsystems.Allotherchaptersareupdated,aswell.
2025/11/5 17:45:47 39.32MB 光纤通信
1
**FCSAN存储网络简介**光纤通道(FC,FibreChannel)存储区域网络(SAN,StorageAreaNetwork)是一种专为高效传输大量数据而设计的网络架构,特别适用于企业级数据中心和大型服务器环境。
它将存储设备从传统的局域网(LAN)中分离出来,形成一个独立的高速网络,用于数据存储和备份。
FCSAN提供了高带宽、低延迟、高可靠性的特性,确保关键业务数据的安全性和可用性。
**FCSAN存储网络入门**构建FCSAN的基础是光纤通道硬件,包括光纤通道交换机、HBA(HostBusAdapter,主机总线适配器)和存储设备,如磁盘阵列或存储虚拟化设备。
HBA是服务器连接到FCSAN的接口,负责在服务器和存储系统之间传输数据。
交换机则如同路由器一样,管理数据在不同端口间的流动,确保数据包的正确路由。
FCSAN的配置通常包括以下步骤:1.**规划网络拓扑**:根据数据中心规模和需求,选择合适的交换机数量、类型和布局。
2.**设置HBA和交换机**:安装HBA驱动,配置交换机端口,建立Zoning(区域)来控制数据流量和访问权限。
3.**连接存储设备**:通过光纤通道线缆将HBA连接到交换机,再将交换机连接到存储设备。
4.**初始化和配置存储**:设置RAID级别,创建LUN(逻辑单元号),分配给服务器进行挂载。
**FCSAN配置**配置FCSAN时,需要考虑以下关键要素:-**zoning策略**:通过zoning来隔离和管理不同服务器对存储设备的访问,防止数据冲突和安全问题。
-**WWNN和WWPN**:每个HBA都有全球唯一的名字(WorldWideNodeName)和端口名字(WorldWidePortName),用于识别和管理网络中的设备。
-**多路径**:配置多条到存储的路径以实现负载均衡和故障切换,提高系统的可用性。
-**服务质量(QoS)**:根据业务优先级设置带宽分配,确保关键应用的性能。
**日常巡检**对于FCSAN的日常运维,主要关注以下方面:1.**监控性能**:检查交换机和存储设备的I/O速率、带宽利用率,确保系统运行正常。
2.**错误检测**:查看日志,发现并解决错误,如丢包、帧错等。
3.**链路状态**:确认所有连接是否稳定,及时处理链路故障。
4.**Zoning和权限检查**:确保Zoning策略符合安全需求,防止未经授权的访问。
5.**备份与恢复**:定期执行数据备份,测试恢复流程,以防数据丢失。
**总结**FCSAN存储网络是企业级数据中心的核心组成部分,它提供了高性能、高可靠性的数据存储解决方案。
了解其基本原理、配置方法以及日常运维要点,对于确保数据中心的稳定运行至关重要。
在实际操作中,还需要不断学习和适应新技术,如FCoE(FCoverEthernet)、NVMeoverFabrics,以满足不断增长的存储需求和性能挑战。
2025/11/5 15:03:46 6.61MB
1
该文档是我针对音视频行业进行学习和归纳的文档,希望为各位提供帮助。
文档包含:视频分辨率&帧率(刷新率)常用视频接口音频接口数据接口传输介质(双绞线&光纤)
2025/10/10 16:29:41 5.48MB 音视频 弱电
1
共 296 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡