连续光谱的同步辐射光通过入射狭缝照射到光栅单色器后,在出射的单色光λ中总是不可避免的混有基波λ的高级次谐波λn=λ/n。
采用自制的33001p/mm金膜自支撑透射光栅和美国IRD公司的AXUVI00G光电二极管探测器,定量研究了光谱辐射标准和计量光束线在5~40nm波段的高次谐波。
研究了Zr,Si,Al和Al/Mg/Al滤片在不同能量范围对高次谐波的抑制作用,给出了实验数据和曲线。
在5~40nm波段,适当的选用Zr,Si,Al和Al/Mg/Al滤片可有效地抑制高次谐波,在5~34nm波段将高次谐波与基波的信号强度比例控制在8.06%以内,经量子效率修正后小于3.08%,在35~40波段经探测器量子效率修正后高次谐波比例小于10.00%。
2024/5/15 8:56:13 1.75MB 光谱学 高次谐波 滤片 真空紫外
1
光电技术是一个高科技行业,光电二极管是光通信接收部分的核心器件。
《光电二极管及其放大电路设计》系统地讨论了光接收及放大电路的设计和解决方案中的带宽、稳定性、相位补偿、宽带放大电路、噪声抑制等问题。
《光电二极管及其放大电路设计》专业性强,系统架构由简到难,理论与实践相结合,具有较强的应用性、资料性和可读性。
《光电二极管及其放大电路设计》适合光信息科学与技术、电子科学与技术、光通信相关专业的高校师生及研发人员使用。
2024/4/27 18:17:38 27.44MB 光电二极管
1
提出并设计了一个应用数字微镜(DMD)的哈达玛变换近红外光谱仪。
以光栅为分光元件,用DMD代替传统的机械式哈达玛编码模板进行光学调制,用InGaAs单点光电二极管探测调制后的光谱信号。
综合考虑分辨率、能量利用率、像差和体积等因素,合理选择狭缝长和宽、光栅入射角及透镜焦距,采用光路分段优化法进行光学设计,通过DMD面阵上的狭缝像和探测器上的点斑尺寸等分析设计结果。
模拟分辨率优于4nm,探测器上点斑尺寸小于3mm,光学系统尺寸为75mm×25mm×85mm。
为提高光谱仪对弱光谱信号的探测能力,在系统前加入了一种集光结构,使从光纤出射的光能的利用率理论值提高24.2%。
实验结果表明,该光谱仪的光谱分辨率优于6nm,通过添加集光结构可以大大提高光谱仪的能量利用效率。
该光谱仪具有分辨率高、能量利用率高、体积小、成本低等优点,有广阔的应用前景。
1
qt下编写界面,通过串口通讯协议控制电机,使电机进行前进,后退,加速,距离,等等设置。
其中并有将电机上光电二极管收到的信息化成波形,并求出波峰面积,等等!绝对好资料
1
设计出了一种用于光强检测的前置放大及量程自动转换电路。
许多光强信号放大电路仅追求高增益,忽略了对测量范围的考虑。
本文采用同轴尾纤型光电探测器把光强信号转换成光电流信号,精密截波稳定型运算放大器ICL7652把光电流信号转化为电压信号,量程转换电路74HC4052受单片机控制可在4个量程之间自动转换,通过调节暗电流补偿电路减小光电二极管暗电流所产生的影响。
仿真测试结果表明,电路参数选择合理、电路模块性能稳定,并且很好地降低了噪声的影响,设计的电路具有低噪声、高增益、高共模抑制比、失调小等优点,探测光强动态范围可达76dB。
1
本文研究了一种采用坐标计算算法和光敏传感器的高精度跟踪系统。
该系统旨在满足通过光纤对集中阳光传输系统进行阳光跟踪的精度要求。
该系统基于两阶段跟踪过程,该过程包括基于坐标计算算法的粗调和使用专门设计的光敏传感器进行的细调。
感光传感器的核心是一个光电二极管矩阵,它可以通过透镜聚焦准确地检测出阳光焦点的位置。
一旦完成微调,基于太阳轨迹运行趋势的预测控制过程将开始。
由于基于坐标计算算法的太阳轨迹的可预测性和光电二极管矩阵的敏锐度,因而跟踪过程稳定且准确。
最高的跟踪精度取决于光电二极管矩阵的紧凑性,并且对坐标计算算法的精度没有限制。
所提出的系统可以以小于0.3mm的位置精度跟踪太阳的焦点
2023/2/22 18:30:29 1.04MB Solar tracking; Hybrid strategy;
1
光电技术是一个高科技行业,光电二极管是光通信接收部分的核心器件。
光电二极管及其放大电路设计系统地讨论了光接收及放大电路的设计和处理方案中的带宽、稳定性、相位补偿、宽带放大电路、噪声抑制等问题。
本书专业性强,系统架构由简到难,理论与实践相结合,具有较强的应用性、资料性和可读性。
本书适合光信息科学与技术、电子科学与技术、光通信相关专业的高校师生及研发人员使用。
2021/3/4 22:32:42 28.96MB 光电二极管 放大电路 电路设计
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡