近年来,随着各种新型荧光探针的出现和成像方法的改进,远场光学成像的分辨率已经突破了衍射极限的限制。
基于结构光照明的荧光显微技术凭借成像速度快、光毒性弱等优点,已成为目前主流的超分辨成像技术之一。
实现结构光照明超分辨显微成像的关键在于照明光场的精准调控和后期的超分辨图像重建算法,否则将会在重建的超分辨图像中产生不可预估的伪影,混淆对观测结构真实形态的判断。
详细对比了几种典型的结构光照明显微超分辨重建算法,证明基于图像重组变换的结构光照明超分辨图像重建算法可以有效解决极低结构光场调制度下的超分辨图像重建问题,降低结构光照明显微中的激发光功率。
2024/9/25 18:30:29 13.65MB 显微 荧光显微 图像重建 结构光照
1
贝塞尔光束的横向光强分布表现为一个中心光斑和一系列同心圆环。
在物理上可以实现的贝塞尔光束,其无衍射传播范围是有限的。
在贝塞尔光束的无衍射范围内,贝塞尔光束保持横向光强分布,即使在遇到不透明障碍物后也可以恢复到原来的横向光强分布。
贝塞尔光束独特的光强分布和传播性质使其得到了广泛应用,例如光学成像,微细加工,光学互联和校直,粒子操控,微缩平板印刷,非线性光学等。
2024/3/10 6:56:49 1KB 贝塞尔光束
1
针对机载光电成像系统的大视场高分辨率成像需求,设计一种基于共心球透镜的多尺度广域高分辨率光学成像系统,该光学系统包括大尺度共心球透镜和小尺度次级相机阵列,具有结构紧凑的优点。
根据共心球透镜所具有的球差和色差特性,并结合小尺度相机对像差进行进一步校正以分割视场,可以实现大视场高分辨率成像。
全系统在受力以及高、低温的条件下进行实验,实验结果表明该成像系统具有良好的稳定性,且全视场范围内的调制传递函数值恒接近于系统的衍射极限,弥散斑半径的方均根值小于探测器的像元尺寸,说明该系统的成像效果良好。
所提系统可以有效解决传统机载成像系统难以同时满足大视场和高分辨率的问题,为光学成像系统设计提供一种新思路。
2023/11/18 2:23:14 20.72MB 几何光学 光学系统 多尺度成 计算成像
1
众所周知,光学成像技术具有成像速度快、可实现无损观察等优点,在人类探索和发现未知世界奥秘的活动中一直扮演着重要的角色。
随着现代科学的发展,对微观结构的研究迫切希望能够从分子水平揭示生命过程和材料性能的物理本质,但受限于光的衍射特性,光学成像系统的空间分辨率不可能无限小,存在瑞利\|阿贝物理极限。
传统光学显微镜的空间分辨率最高只能达到波长的1/2,故而对低于200nm的细节信息无能为力。
能否突破这个极限成为当今光学领域公认的一个重大研究课题和挑战。
2023/10/2 6:51:42 170KB
1
针对机载相机广域高效航拍作业需求,采用新型级联光学成像结构,设计了一种宽覆盖高分辨率机载相机光学系统。
该系统由对称前置同心物镜和中继转像透镜阵列组成,对称前置同心物镜获取剩余像差均匀的宽视场曲面像,中继转像透镜阵列对该曲面像进行视场细分、剩余像差校正及中继成像。
所设计的机载相机光学系统焦距为60mm、F数为3.4、视场角可达132°。
基于一阶理论和像差特性,在不同飞行高度对地观测时,研究了机载相机光学系统的成像质量与宽视场曲面像的关系,获得系统在不同飞行高度实现清晰成像的方法。
通过像质评价,结果表明,优化设计的系统在低空、中空及高空进行对地观测时,像面光线追迹点列图方均根半径均优于1.6μm,在奈奎斯特频率为230lp/mm处,调制传递函数均达0.4,系统成像性能优异且像质均匀。
新型级联光学成像系统适用于不同飞行高度的机载相机。
2023/9/9 23:56:15 17.46MB 光学设计 级联光学 机载相机 宽覆盖
1
数字图像收集与处置课程的课件(光学成像体系.ppt)
2023/3/28 0:45:38 1.31MB 光学成像系统
1
StanfordEE261,FourierTransformanditsapplications.讲解非常好,基本每一步都在进行数学推导。
同时给出热力学,光学,成像的具体使用实例。
最近才的部分也包含在对一维到多维傅里叶变换的使用。
无信号与系统基础的话,也可在这本书中找到对于线性系统的讲述。
2016/6/12 18:48:51 30.06MB 傅里叶变换
1
讲解非常好,基本每一步都在进行数学推导。
同时给出热力学,光学,成像的具体使用实例。
2022/9/5 23:18:55 5.03MB 傅里叶变换
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡