《PLS偏最小二乘法在MATLAB中的实现详解》PLS(PartialLeastSquares,偏最小二乘)是一种统计分析方法,广泛应用于多元数据分析,特别是在化学计量学、机器学习和模式识别等领域。
它通过将原始数据投影到一个新的低维空间中,使因变量与自变量之间的关系得到最大化,并且能有效处理多重共线性问题。
MATLAB作为强大的数值计算和数据可视化工具,是实现PLS的理想平台。
本资料包含两个部分:单因变量的PLS实现和多因变量的PLS实现。
下面将对这两个方面进行详细阐述。
1.单因变量PLS:单因变量的PLS主要针对只有一个响应变量的情况。
在MATLAB中,我们首先需要定义输入变量X和输出变量y,然后构建PLS模型。
关键步骤包括:-数据预处理:对数据进行标准化或归一化,以消除量纲影响。
-计算X和y的相关矩阵,找到最大相关性的方向。
-通过奇异值分解(SVD)分解相关矩阵,得到主成分。
-选择合适的主成分数量,这通常通过交叉验证来确定。
-使用选定的主成分构建PLS回归模型,预测y值。
2.多因变量PLS:对于多因变量情况,PLS的目标是同时考虑多个响应变量。
此时,我们可以使用多响应PLS(MRPLS)或者偏最小二乘判别分析(PLSDA)。
MATLAB中的实现步骤大致相同,但需要处理多个y变量:-同样进行数据预处理。
-计算X与所有y的联合相关矩阵。
-SVD分解该联合相关矩阵,提取主成分。
-对每个y变量分别建立PLS模型,每个模型有自己的权重向量和载荷。
-使用选定的主成分,对每个y变量进行预测。
在MATLAB中,可以利用内置函数如`plsregress`或自定义脚本来实现这些过程。
自定义脚本能够提供更大的灵活性,允许用户调整参数和添加额外的特性,如正则化、特征选择等。
总结,PLS偏最小二乘法在MATLAB中的实现涉及数据预处理、主成分提取、模型构建和验证等多个环节。
通过理解这些步骤,可以有效地应用PLS解决实际问题,无论是单因变量还是多因变量的情况。
提供的MATLAB程序代码文档将为读者提供具体的实现细节和示例,帮助深入理解和掌握PLS算法。
2025/8/9 10:36:08 4KB 偏最小二乘 matlab程序
1
基于遗传算法的偏最小二乘法,是数据分析里因子分析和回归的利器。
2025/8/8 2:53:53 41KB 遗传算法
1
自己整理的关于偏最小二乘方面的资料,包括迭代偏最小二乘法NIPALS,高斯核变换,交叉有效性等
2024/11/15 8:54:30 586KB PLS 偏最小二乘
1
由于神经网络具有拟合非线性的能力,所以可以用神经网络来处理内部模型的非线性特性,因此这种内部模型采用神经网络的非线性PLS方法得到了广泛的应用。
传统的前馈神经网络在训练中采用梯度学习算法,网络中的参数需要迭代更新,不仅训练时间长,而且容易导致局部极小和过度训练等问题,另外其多隐层的结构也导致了样本训练速度慢,训练误差大"此外,Bartlett提出对于已达到最小训练误差的前馈神经网络,权值越小泛化特性越好,而传统的梯度学习算法仅仅考虑训练误差最小,忽视了权值大小对网络的影响,这些问题都将影响到模型的泛化特性。
2024/3/4 2:50:15 16KB elm&pls
1
偏最小二乘法讲解最好的书,理论推导非常仔细,里面还有我自己做的笔记,,值得下载,强烈推荐、
2023/7/12 9:06:30 4.03MB PLS LS
1
偏最小二乘法是一种数学优化本领,它经由最小化倾向的平方以及找到一组数据的最佳函数匹配。
用最简的方式求患上一些相对于不可知的真值,而令倾向平方之以及为最小。
许多其余的优化下场也可经由最小化能量或者最大化熵用最小二乘方式表白。
2023/4/18 13:25:55 237KB 偏最小二乘法 PLS 算法
1
详细的讲解非线性偏最小二乘法的运算过程,可以将其直接用来计较
2015/5/13 15:49:43 32KB NIPALS
1
本人常用的程序解压直接可用:偏最小二乘法PLS遗传算法GA代码工具箱MATLAB包括各种调用函数及实现代码和使用说明书iplssipls实现代码
2017/1/19 17:07:39 816KB 偏最小二乘法 遗传算法 代码
1
包含最多个函数,统计学习的偏最小二乘法(pls)的程序代码工具包,附带详细的说明,matlab下运转。
2020/8/14 21:41:31 990KB matlab应用 工具包
1
pls偏最小二乘法的matlab实现,网上下载的,都打包到一起了,慢慢看吧。
我从中找到了自己想要的,希望对你有协助!
2021/10/19 2:52:42 111KB pls 最小二乘法 matlab
1
共 11 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡