OPCClientTool简单实用、轻便的绿色版OPC协议调试软件工具。
(一)OPC简介:OPC工具包产品由DELPHI语言编写,以标准动态连接库(DLL)形式提供二次开发接口,与Win98、WinNT、WINXP、WIN2000、WIN2003系统兼容,完全封装了COM技术实现细节,使二次开发的程序员无需了解COM和OPC规范底层细节,降低客户端程序开发的复杂程度和减少了熟悉OPC技术的时间。
(二)工具包的特点:数据访问服务器工具包于2004年3月开发完成,工具包提供对OPCDataAccess2.04规范(以下简称OPCDA规范)的全面支持,工具包具有以下特点:1)完全符合OPCDataAccess2.04标准,通过OPC基金会兼容性产品测试2)完全的封装使二次开发人员不需要了解COM技术和OPC规范接口细节3)工具包支持多种开发语言,如VC、BC、VB、Delphi等4)支持win98、winNT、winXP、win2000、win20035)逻辑清晰、功能明确的二次开发函数保证用户进行二次开发简单容易6)支持数据访问服务器1.0、2.0标准7)支持同步、异步数据通讯方式8)支持分布式体系结构9)支持多服务器同时连接,便于数据汇集和整合
1
本文简述了电子商务,尤其是网络购物发展现状,并根据一小型服装企业实际需求提出了构建基于SSH(Struts+Spring+Hibernate)整合框架的电子商务系统的项目计划。
其次,深入研究了轻量级JavaEE应用体系结构。
最后,在此基础上,严格按照软件开发规范设计本电子商务系统,对系统进行详细的需求分析、体系架构设计、概要设计及详细设计。
最终实现了一个网上购物系统
2025/7/24 9:40:22 3.79MB SSH 设计文档
1
KWICjava观察者模式实现体系结构课程作业
2025/7/20 14:02:46 12KB KWIC 观察者模式
1
火龙果软件工程技术中心  创建型模式 创建型模式(CreationalPattern)对类的实例化过程进行了抽象,能够使软件模块做到与对象创建和组织的无关性。
为了使体系结构更加清晰,一些软件在设计上要求当创建类的具体实例时,能够根据具体的语境来动态地决定怎样创建对象,创建哪些对象,以及怎样组织和表示这些对象,而创建型模式所要描述的就是该如何来解决这些问题。
按照生成目标的不同,创建型模式可以分为类的创建型模式和对象的创建型模式两种:类的创建型模式类的创建型模式通过使用继承关系,将类的创建交由具体的子类来完成,这样就向外界隐藏了如何得到具体类的实现细节,以及这些类的实例是如何被创建和组织在一起的。
2025/7/14 21:53:10 152KB SimpleFacotry
1
软件体系结构课程设计报告希望可以给准备课程设计的童鞋提供一些帮助。
2025/7/11 4:22:20 205KB 软件体系结构 课程设计 报告
1
软件体系结构课程设计的仓库管理系统需求分析,以及用uml建模。
2025/7/9 21:50:45 264KB uml建模
1
中科大计算机体系结构课程动态分支预测gshareBHTBHR
2025/7/8 8:29:22 220KB 体系结构 分支预测 gshare
1

C语言程序的理解与编译优化C语言程序的理解与编译优化是计算机科学和软件工程中的核心技术之一。
作为一种通用的编程语言,C语言广泛应用于操作系统、嵌入式系统、应用程序等领域。
然而,C语言程序的理解和编译优化是一个复杂的过程,需要程序员具备深入的理论基础和实践经验。
从C语言程序的理解开始,需要了解C语言的基本语法和语义结构。
C语言是一种过程式编程语言,具有变量、数据类型、运算符、控制结构、函数等基本元素。
程序员需要了解C语言的变量声明、数据类型转换、运算符优先级、控制结构的使用等基本概念。
在C语言程序的编译优化方面,需要了解编译器的工作原理和优化技术。
编译器是将C语言源代码翻译成机器代码的工具,编译过程包括词法分析、语法分析、语义分析、优化和代码生成等阶段。
编译器的优化技术包括Register Allocation、Instruction Selection、Instruction Scheduling、Dead Code Elimination等。
Register Allocation是编译器优化技术中的一种重要技术,目的是为变量分配寄存器,减少内存访问次数,提高程序执行速度。
Instruction Selection是根据目标机器的指令集架构,选择合适的指令来实现源代码的功能。
Instruction Scheduling是根据指令的依赖关系和执行顺序,安排指令的执行顺序,以提高程序的执行速度。
Dead Code Elimination是编译器优化技术中的一种重要技术,目的是删除源代码中无用的代码,减少程序的执行时间和内存占用。
编译器还可以使用其他优化技术,如Constant Folding、Constant Propagation、Copy Elimination等。
此外,C语言程序的理解和编译优化还需要了解计算机体系结构和操作系统的基本概念,如指令系统架构、存储器管理、进程管理等。
程序员需要了解计算机体系结构的基本原理,如MIPS、x86、ARM等指令系统架构,并且了解操作系统的基本原理,如进程管理、内存管理、文件系统等。
C语言程序的理解和编译优化需要程序员具备深入的理论基础和实践经验,需要了解C语言的基本语法和语义结构、编译器的工作原理和优化技术、计算机体系结构和操作系统的基本概念等。
只有具备了这些知识和技能,程序员才能更好地理解和编译优化C语言程序,提高软件开发的效率和质量。
2025/6/20 7:27:53 2.4MB
1

物联网技术引起了全世界的广泛关注,终端数量持续上升,逐渐成为上百亿个终端市场,其丰富的应用和大量节点数给网络运营带来了技术上的挑战。
而已IPV6为核心的下一代通信网络体系结构所带来的巨大的地址空间和端到端通信特征则为物联网的发展创造了良好的基础网络通信条件。
面来深入理解物联网IPV6技术的进展:1. **IPv6解决物联网寻址问题**:随着物联网设备的爆发式增长,传统的IPv4地址已经无法满足海量设备的地址需求。
IPv6提供了几乎无限的地址空间(3.4x10^38),这为每个物联网设备分配唯一IP地址提供了可能,解决了大规模网络节点的寻址难题。
2. **IPv6的自动配置和移动管理**:IPv6具有内置的地址自动配置功能(如SLAAC、NDP),使得物联网设备可以无需人工干预就能接入网络。
此外,IPv6的移动管理机制,如移动IPv6(MIPv6),能更好地支持物联网设备的移动性和漫游,适应各种应用场景。
3. **服务质量(QoS)支持**:IPv6通过流标签功能实现了服务质量的精细化控制,这对于物联网中如实时监控、远程医疗等对延迟和带宽敏感的应用至关重要。
QoS机制可以根据应用需求动态调整服务等级,确保关键数据的优先传输。
4. **网络安全保障**:IPv6将IPSec协议内置于协议栈,提供端到端的安全保障,满足物联网设备之间的安全通信需求,保护数据隐私和设备安全。
这对于物联网中广泛存在的敏感数据传输尤其重要。
5. **IPv6在低功耗有损网络的适应性**:针对低功耗和有损网络环境,如6LoWPAN,IPv6进行了相应的优化和适配。
6LoWPAN工作组设计了适配层和报头压缩技术,允许IPv6数据包在IEEE 802.15.4这样的限制性网络中高效传输。
此外,还制定了RPL路由协议以满足低功耗网络的路由需求,支持各种数据流量模型。
6. **轻量级应用层协议**:CoRE工作组为资源受限的物联网环境开发了CoAP协议,它是RESTful架构的一个轻量级实现,与HTTP协议相比,更适合在有限资源的设备间进行交互。
CoAP协议可以独立使用,或者通过网关与HTTP协议进行互操作,实现物联网设备与互联网的无缝连接。
7. **物联网网络演进的挑战**:在向IPv6演进过程中,需要考虑物联网设备的升级、网络架构的调整以及不同协议间的互通问题。
这涉及到感知层、网络层和应用层的全面改造,包括6LoWPAN节点、IPv6端点以及中间设备的升级。
物联网IPV6技术的进展在于解决大规模设备的地址需求、提供高效安全的网络服务、适应低功耗环境,并通过轻量级应用层协议提升物联网设备的互操作性。
随着技术的不断成熟,IPv6将成为物联网发展的核心支撑,推动智能城市的建设、工业自动化、智能家居等领域的创新。
2025/6/19 16:47:15 15KB
1
目录前言1.翻译说明1.在Tomcat中快速上手1.1.开始Hibernate之旅1.2.第一个可持久化类1.3.映射cat1.4.与猫同乐1.5.结语2.体系结构2.1.总览2.2.JMX集成2.3.JCA支持3.SessionFactory配置3.1.可编程配置方式3.2.获取SessionFactory3.3.用户自行提供JDBC连接3.4.Hibernate提供的JDBC连接3.5.可选配置属性3.5.1.SQLDialectsSQL方言3.5.2.外连接抓取(OuterJoinFetching)3.5.3.二进制流3.5.4.自定义CacheProvider3.5.5.事务策略配置3.5.6.绑定SessionFactory到JNDI3.5.7.查询语言替换3.6.Logging3.7.实现NamingStrategy(命名策略)3.8.XML配置文件4.持久化类(PersistentClasses)4.1.POJO简单示例4.1.1.为持久化字段声明访问器(accessors)和是否可变的标志(mutators)4.1.2.实现一个默认的构造方法(constructor)4.1.3.提供一个标识属性(identifierproperty)(可选)4.1.4.建议使用不是final的类(可选)4.2.实现继承(Inheritance)4.3.实现equals()和hashCode()4.4.持久化生命周期(Lifecycle)中的回调(Callbacks)4.5.合法性检查(Validatable)回调4.6.XDoclet标记示例5.O/RMapping基础5.1.映射声明(Mappingdeclaration)5.1.1.Doctype5.1.2.hibernate-mapping5.1.3.class5.1.4.id5.1.4.1.generator5.1.4.2.高/低位算法(Hi/LoAlgorithm)5.1.4.3.UUID算法(UUIDAlgorithm)5.1.4.4.标识字段和序列(IdentitycolumnsandSequences)5.1.4.5.程序分配的标识符(AssignedIdentifiers)5.1.5.composite-id联合ID5.1.6.识别器(discriminator)5.1.7.版本(version)(可选)5.1.8.时间戳(timestamp)(可选)5.1.9.property5.1.10.多对一(many-to-one)5.1.11.一对一5.1.12.组件(component),动态组件(dynamic-component)5.1.13.子类(subclass)5.1.14.连接的子类(joined-subclass)5.1.15.map,set,list,bag5.1.16.引用(import)5.2.Hibernate的类型5.2.1.实体(Entities)和值(values)5.2.2.基本值类型5.2.3.持久化枚举(Persistentenum)类型5.2.4.自定义值类型5.2.5.映射到"任意"(any)类型5.3.SQL中引号包围的标识符5.4.映射文件的模块化(Modularmappingfiles)6.集合类(Collections)映射6.1.持久化集合类(PersistentCollections)6.2.映射集合(MappingaCollection)6.3.值集合和多对多关联(CollectionsofValuesandMany-To-ManyAssociations)6.4.一对多关联(One-To-ManyAssociations)6.5.延迟初始化(延迟加载)(LazyInitializa
2025/6/15 21:44:18 262KB hibernate 教程 hibernate教程
1
共 427 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡