代理人替代模型是一种近似方法,它模仿计算上昂贵的模拟的行为。
用更多的数学术语:假设我们正在尝试优化函数f(p),但是f每次计算都非常昂贵。
可能是我们需要为每个点求解PDE或使用高级数值线性代数机制的情况,这通常很昂贵。
我们的想法是再开发一个替代模型g近似于f通过对从评估收集以前的数据训练f。
代理模型的构建可以看作是一个三步过程:样品选择替代模型的构建代理优化当前所有可用的采样方法:网格制服索博尔拉丁超立方体低差异克罗内克金的随机的当前所有可用的代理模型:克里格使用Stheno进行克里金法径向基础温德兰线性的二阶多项式支持向量机(等待LIBSVM分辨率)神经网络随机森林洛巴切斯基反距离多项式展开保真度可变专家混合(等待GaussianMixtures软件包在v1.5上工作)地球梯度增强克里格当前所有可用的优
2025/9/29 14:18:35 150KB
1
拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。
通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。
这类方法大大优于最速下降法,尤其对于困难的问题。
另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。
如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。
本程序是拟牛顿法-bfgs算法的matlab代码。
2025/9/8 22:31:42 1KB Matlab BFGS
1
此程序为声波波动方程正演Fortran程序,可实现程序自动建模,采用PML边界条件(程序中嵌有自由边界条件,可供选择),交错网格有限差分算法,时间二阶空间任意偶数阶精度,可为初学者提供学习代码。
1
二阶倒立摆建模与仿真matlabsimulink仿真
2025/8/31 11:19:25 228KB 二阶倒立摆
1
matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等matlab求图片二阶矩一阶矩不变矩等
2025/8/14 17:44:26 131B matlab
1
响应面方法的使用,结合一次二阶矩计算问题的可靠性指标
2025/8/13 2:14:23 2KB RSM 响应面方法
1
LM算法介绍:牛顿法需要时刻计算H矩阵,即二阶导数信息,是很麻烦的一件事情,LM算法的核心思想就是用雅可比矩阵(易计算)代替H矩阵的计算,使得优化效率有了提升,文档包括了Matlab/Opencv实现案例
1.77MB LM Matlab Opencv
1
典型环节的电路模拟与Matlab仿真研究二阶系统阶跃响应与Matlab仿真研究稳定性分析的电路模拟与Matlab仿真研究.使用电气自动化电信类同学进行参考
2025/7/16 20:28:31 2.14MB 实验 自动控制 电气自动化
1
一本目前为止最好的fluent学习书本第一章流体力学基础与FLUENT简介第一节概论一、流体的密度、重度和比重二、流体的黏性——牛顿流体与非牛顿流体三、流体的压缩性——可压缩与不可压缩流体四、液体的表面张力第二节流体力学中的力与压强一、质量力与表面力二、绝对压强、相对压强与真空度三、液体的汽化压强四、静压、动压和总压第三节能量损失与总流的能量方程一、沿程损失与局部损失二、总流的伯努里方程三、人口段与充分发展段第四节流体运动的描述一、定常流动与非定常流动二、流线与迹线三、流量与净通量四、有旋流动与有势流动五、层流与湍流第五节亚音速与超音速流动一、音速与流速二、马赫数与马赫锥三、速度系数与临界参数四、可压缩流动的伯努里方程五、等熵滞止关系式第六节正激波与斜激波一、正激波二、斜激波第七节流体多维流动基本控制方程一、物质导数二、连续性方程三、N—S方程第八节边界层与物体阻力一、边界层及基本特征二、层流边界层微分方程三、边界层动量积分关系式四、物体阻力第九节湍流模型第十节FLUENT简介一、程序的结构二、FLUENT程序可以求解的问题三、用FLUENT程序求解问题的步骤四、关于FLUENT求解器的说明五、FLUENT求解方法的选择六、边界条件的确定第二章二维流动与传热的数值计算第一节冷、热水混合器内部二维流动一、前处理——利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图第3步由节点创建直线第4步创建圆弧边第5步创建小管嘴第6步由线组成面第7步确定边界线的内部节点分布并创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行混合器内流动与热交换的仿真计算第1步与网格相关的操作第2步建立求解模型第3步设置流体的物理属性第4步设置边界条件第5步求解第6步显示计算结果第7步使用二阶离散化方法重新计算第8步自适应性网格修改功能小结课后练习第二节喷管内二维非定常流动一、利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图和边界线的节点第3步由节点创建直线第4步利用圆角功能对I点处的角倒成圆弧第5步由边线创建面第6步定义边线上的节点分布第7步创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行喷管内流动的仿真计算第1步与网格相关的操作第2步确定长度单位第3步建立求解模型第4步设置流体属性第5步设置工作压强为0atm第6步设置边界条件第7步求解定常流动第8步非定常边界条件设置以及非定常流动的计算第9步求解非定常流第10步对非定常流动计算数据的保存与后处理小结课后练习第三节三角翼的可压缩外部绕流一、利用GAMBIT建立计算模型第1步启动Gambit,并选择求解器为FLUENT5/6第2步创建节点第3步由节点连成线第4步由边线创建面第5步创建网格第6步设置边界类型第7步输出网格文件二、利用FLUENT进行仿真计算第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步建立计算模型第4步设置流体材料属性第5步设置工作压强第6步设置边界条件第7步利用求解器进行求解第8步计算结果的后处理小结课后练习第四节三角翼不可压缩的外部绕流(空化模型应用)第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步设置求解器第4步设置流体材料及其物理性质第5步设置流体的流相第6步设置边界条件第7步求解第8步对计算结果的后处理小结课后练习第五节VOF模型的应用一、利用GAMBIT建立计算模型第1步启动GAMBIT并选择FLUENT5/6求解器第2步建立坐标网格并创建节点第3步由节点连成直线段第4步创建圆弧第5步创建线段的交点G第6步将两条线在G点处分别断开第7步删除DG直线和FG弧线第8步由边创建面第9步定义边线上的节点分布第10步在面上创建结构化网格第11步设置边界类型第12步输出网格文件并保存会话二、利用FLUENT2D求解器进行求解第1步读入、显示网格并设置长度单位第2步设置求解器第3步设置流体材料及属
2025/7/10 13:07:48 4.29MB 计算流体
1
贝塞尔曲线是一种在计算机图形学和数学中广泛使用的参数化曲线,它提供了对形状的精细控制,特别是在曲线拟合和路径设计中。
本资源包含MATLAB源码,用于实现从一阶到八阶的贝塞尔曲线拟合,以及一个拟合后评价标准的文档。
一、贝塞尔曲线基础贝塞尔曲线由法国工程师PierreBézier于1962年提出,它基于控制点来定义。
一阶贝塞尔曲线是线性,二阶是二次曲线,而高阶曲线则可以构建出更复杂的形状。
对于n阶贝塞尔曲线,需要n+1个控制点来定义。
这些曲线的特性在于它们通过首尾两个控制点,并且随着阶数的增加,曲线更好地逼近中间的控制点。
二、MATLAB实现MATLAB是一个强大的数值计算和可视化工具,其脚本语言非常适合进行这样的曲线拟合工作。
`myBezier_ALL.m`文件很可能是包含了从一阶到八阶贝塞尔曲线的生成函数。
这些函数可能接收控制点的坐标作为输入,然后通过贝塞尔曲线的数学公式计算出对应的参数曲线。
MATLAB中的贝塞尔曲线可以通过`bezier`函数或直接使用矩阵运算来实现。
三、贝塞尔曲线拟合拟合过程通常涉及找到一组控制点,使得生成的贝塞尔曲线尽可能接近给定的一系列数据点。
这可能通过优化算法,如梯度下降或遗传算法来实现。
在`myBezier_ALL.m`中,可能包含了一个或多个函数来执行这个过程,尝试最小化曲线与数据点之间的距离或误差。
四、拟合的评价标准"拟合的评价标准.doc"文档可能详述了如何评估拟合的好坏。
常见的评价标准包括均方误差(MSE)、均方根误差(RMSE)或者R²分数。
这些指标可以量化拟合曲线与实际数据点之间的偏差程度。
MSE和RMSE衡量的是平均误差的平方,而R²分数表示模型解释了数据变异性的比例,值越接近1表示拟合越好。
五、应用领域贝塞尔曲线在多个领域有广泛应用,包括但不限于CAD设计、游戏开发、动画制作、图像处理和工程计算。
MATLAB源码的提供,对于学习和研究贝塞尔曲线的特性和拟合方法,或者在项目中创建平滑曲线路径,都是非常有价值的资源。
这份MATLAB源码和相关文档为理解并实践贝塞尔曲线拟合提供了一个完整的工具集。
通过学习和利用这些材料,用户不仅可以掌握贝塞尔曲线的基本概念,还能深入理解如何在实际问题中运用它们进行曲线拟合和评估。
2025/6/30 9:00:23 25KB 贝塞尔曲线 曲线拟合
1
共 134 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡