二维稳态导热的数值计算主要采用了热平衡法。
用差分法建立节点的热平衡方程,将节点所在的单元体的四个方向传递的热流密度,内热源在单元体产生的热流密度,根据能量守恒的原则建立方程,可以得到每一个节点的离散化代数方程。
进行数值计算的方法是:先设定初值,在根据初值对每一个节点进行迭代可以求得节点的值。
再将初值与新值进行比较,判断迭代的敛散性。
比较常用的迭代方法有两种:Gauss-Seidel法和Jacobi法。
Gaus-Seidel法每次迭代计算,均是使用节点温度的最新值。
Jacobi迭代法每次迭代计算均用上一次迭代计算出的值。
对于一个代数方程组,若选用的迭代方式不合适有可能导致迭代过程发散,而对于常物性导热问题组成差分方程组,每一个方程都选用导出方程的中心节点温度作为迭代变量则迭代一定收敛。
2024/10/16 14:33:39
2.28MB
二维稳态导热
1