包含姓名,性别,学号,手机号,身份证号,性别,可以实现添加、编辑、删除、退出功能
2024/4/19 7:43:46 78KB Axure
1
老二牛车教育程矢Axure夜话之中继器系列视频教程之中继器表格添加带图像数据.rar
2024/4/13 10:45:03 622KB axure
1
网络互连、网络互连技术、网络互连设备如中继器、网桥、HUB、交换机、路由器等网络互连中的技术概念如广播域、冲突域、VLAN中继协议、STP生成树协议等路由表、网关
2024/2/29 19:29:05 2.4MB 广域网 internet
1
一款能实现低速RS485中继器功能的设计资料参考设计文档(完整原理图和PCB)。
能让RS485在2400bps及9600bps速率下实现大于5千米的通讯距离,从节点大于256个,接法任意,不挑剔线材。
最低成本的低速RS485中继器完整设计资料。
1
多数都是已经在百度验证答案了!新华三杯”2017年全国大学生IT技术大赛预选赛 单选题 ] (2.0分) 以下工作于OSI参考模型数据链路层的设备是______。
(单选题*必答) A 广域网交换机 B 路由器 C 中继器 D 集线器应用层表示层会话层传输层网络层数据链路层物理层TCP/IP:第一层:网络接口层第二层:网间层第三层:传输层第四层:应用层 单选题 ] (2.0分) FTP默认使用的控制协议端口是______。
(单选题*必答)POP3协议用于接收或下载邮件,默认端口110SMTP协议用于传输或发送邮件,默认端口25DNS是域名解析的系统,默认端口53DHCP是动态主机配置协议,默认端口67(服务器)68(客户)DHCP用的端号是UDP67和UDP68,这两个端口是正常的DHCP服务端口,你可以理解为一个发送,一个接收。
客户端向68端口(bootps)广播请求配置,服务器向67端口(bootpc)广播回应请求。
DHCP(DynamicHostConfigurationProtocol,动态主机配置协议)是一个局域网的网络协议,使用UDP协议工作,主要有两个用途:给内部网络或网络服务供应商自动分配IP地址,给用户或者内部网络管理员作为对所有计算机作中央管理的手段,在RFC2131中有详细的描述。
DHCP有3个端口,其中UDP67和UDP68为正常的DHCP服务端口,分别作为DHCPServer和DHCPClient的服务端口;
546号端口用于DHCPv6Client,而不用于DHCPv4,是为DHCPfailover服务,这是需要特别开启的服务,DHCPfailover是用来做“双机热备”的。
一般:67端口来接受!68端口来发送!HTTP默认使用TCP的80端口标识FTP默认使用TCP的21端口标识HTTPS默认使用TCP的443端口远程桌面协议(RDP)默认使用TCP的3389端口Telnet使用TCP的23端口Windows访问共享资源使用TCP的445端口TFTP采用的传输层知名端口号为69。
TFTP(TrivialFileTransferProtocol,简单文件传输协议)是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。
 A 20 B 21 C 23 D 223 [ 单选题 ] (2.0分) 在如图所示的TCP连接的建立过程中,SYN中的Z部分应该填入________(单选题*必答
2023/11/23 0:47:12 460KB 整理的资料
1
计算机网络知识点总结第一章、计算机网络体系结构1.计算机网络的主要功能?2.主机间的通信方式?3.电路交换,报文交换和分组交换的区别?4.计算机网络的主要性能指标?5.计算机网络提供的服务的三种分类?6.ISO/OSI参考模型和TCP/IP模型?7.端到端通信和点到点通信的区别?第二章、物理层8.如何理解同步和异步?什么是同步通信和异步通信?9.频分复用时分复用波分复用码分复用第三章、数据链路层10.为什么要进行流量控制?11.流量控制的常见方式?12.可靠传输机制有哪些?13.随机访问介质访问控制?14.PPP协议?15.HDLC协议?16.试分析中继器、集线器、网桥和交换机这四种网络互联设备的区别与联系。
第四章、网络层17.路由器的主要功能?18.动态路由算法?19.网络层转发分组的流程?20.IP地址和MAC地址?21.ARP地址解析协议?22.DHCP动态主机配置协议?23.ICMP网际控制报文协议?第五章、传输层24.传输层的功能?25.UDP协议?26.TCP协议?27.拥塞控制的四种算法?28.为何不采用“三次握手“释放连接,且发送最后一次握手报文后要等待2MSL的时间呢?
1
第1章绪论1.1历史回顾1.2电通信系统的基本组成1.2.1数字通信系统1.2.2数字通信的早期工作1.3通信信道及其特征1.4通信信道的数学模型1.5本书的结构1.6深入学习第2章信号和系统的频域分析2.1傅里叶级数2.1.1实信号的傅里叶级数:三角傅里叶级数2.2傅里叶变换2.2.1实信号、偶信号和奇信号的傅里叶变换2.2.2傅里叶变换的基本性质2.2.3周期信号的傅里叶变换2.3功率和能量2.3.1能量型信号2.3.2功率型信号2.4带宽受限信号的抽样2.5带通信号2.6深入学习习题第3章模拟信号的发送和接收3.1调制简介3.2振幅调制(AM)3.2.1双边带抑制载波AM3.2.2常规振幅调制3.2.3单边带AM3.2.4残留边带AM3.2.5AM调制器和解调器的实现3.2.6信号多路复用3.3角度调制3.3.1FM信号和PM信号的表示形式3.3.2角度调制信号的频谱特性3.3.3角度调制器和解调器的实现3.4无线电广播和电视广播3.4.1AM无线电广播3.4.2FM无线电广播3.4.3电视广播3.5移动无线电系统3.6深入学习习题第4章随机过程4.1概率及随机变量4.2随机过程:基本概念4.2.1随机过程的描述4.2.2统计平均4.2.3平稳过程4.2.4随机过程与线性系统4.3频域中的随机过程4.3.1随机过程的功率谱4.3.2线性时不变系统的传输4.4高斯过程及白过程4.4.1高斯过程4.4,2白过程4.5带限过程及抽样4.6带通过程4.7深入学习习题第5章模拟通信系统中的噪声影响5.1噪声对线性调制系统的影响5.1.1噪声对基带系统的影响5.1.2噪声对DSB-SCAM的影响5.1.3噪声对SSBAM的影响5.1.4噪声对常规调幅的影响5.2使用锁相环(PLL)进行载频相位估计5.2.1锁相环5.2.2加性噪声对相位估计的影响5.3噪声对角度调制的影响5.3.1角度调制的门限效应5.3.2预加重和去加重滤波5.4模拟调制系统的比较5.5模拟通信系统中传输损耗和噪声的影响5.5.1热噪声源的特征5.5.2噪声温度效应及噪声系数5.5.3传输损耗5.5.4信号传输中继器5.6深入学习习题第6章信源与信源编码6.1信源的数学模型6.1.1信息的度量6.1.2联合熵与条件熵6.2信源编码理论6.3信源编码算法6.3.1霍夫曼信源编码算法6.3.2Lempel-Ziv信源编码算法6.4率失真理论6.4.1互信息量6.4.2微分熵6.4.3率失真函数6.5量化6.5.1标量量化6.5.2矢量量化6.6波形编码6.6.1脉冲编码调制(PCM)6.6.2差分脉冲编码调制(DPCM)6.6.3增量调制(M)6.7分析-合成技术6.8数字音频传输和数字音频记录6.8.1电话传输系统中的数字音频信号6.8.2数字音频录制6.9JPEG图像编码标准6.10深入学习习题第7章加性高斯白噪声信道中的数字传输7.1信号波形的几何表示7.2脉冲振幅调制7.3二维信号波形7.3.1基带信号7.3.2二维带通信号--载波相位调制7.3.3二维带通信号--正交振幅调制7.4多维信号波形7.4.1正交信号波形7.4.2双正交信号波形7.4.3单纯信号波形7.4.4二进制编码的信号波形7.5加性高斯白噪声信道中数字已调信号的最佳接收机7.5.1相关型解调器7.5.2匹配滤波器型解调器7.5.3最佳检测器7.5.4载波振幅已调信号的解调和检测7.5.5载波相位已调信号的解调和检测7.5.6正交振幅已调信号的解调和检测7。
5.7频率已调信号的解调和检测7.6加性高斯白噪声中信号检测的错误概率7.6.1二进制调制的错误概率7.6.2M进制PAM的错误概率7.6.3相位相干PSK调制的错误概率7.6.4DPSK的系统错误概率7.6.5QAM的错误概率7.6.6M进制正交信号的错误概率7.6.7M进制双正交信号的错误概率7.6.8M进制单纯信号的错误概率7.6.9FSK的非相干检测的错误概率7.6.10调制方式的比较7.7有线和无线通信信道的性能分析7.7.1再生中继器7.7.2无线信道中的链路预算分析7.8码元同步7.8.1超前-滞后门同步法7.8.2最小均方误差法7.8.3最大似然准则法7.8.4频谱线法7.8.5载波已调信号的码元同步7.9深入学习习题第8章通过带限AWGN信道的数字传输8.1通过带限信道的数字传输8.1.1带限基带信道上的数字PAM传输8.1.2带限带通信道上的数字传输8.2数字已调信号的功率谱8.2.1基带信号的功率谱8.2.2载波已调信号的功率谱8.3带限信道的信号设计8.3.1无码间干扰的带限信号的设计--奈奎斯特准则8.3.2具有可控ISI的带限信号8.4检测数字PAM的错误概率8.4.1具有零ISI的PAM检测的错误概率8.4.2可控ISI的逐码元数据检测8.4.3部分响应信号检测的错误概率8.5与记忆有关的数字调制信号8.5.1有记忆的调制编码与调制信号8.5.2最大似然序列检测器8.5.3部分响应信号的最大似然序列检测8.5.4有记忆数字信号的功率谱8.6存在信道失真的系统设计8.6.1已知信道的发送和接收滤波器的设计8.6.2信道均衡8.7多载波调制和OFDM8.7.1FFT算法实现的OFDM系统8.8深入学习习题第9章信道容量与信道编码9.1信道模型9.2信道容量9.2.1高斯信道容量9.3通信的容限9.3.1模拟信号的PCM传输9.4可靠通信的编码9.4.1正交信号错误概率的紧界9.4.2编码的原则9.5线性分析码9.5.1线性分组码的译码及其性能9.5.2突发错误纠错编码9.6循环码9.6.1循环码的结构9.7卷积码9.7.1卷积码的基本性质9.7.2卷积码的最佳译码--维特比算法9.7.3卷积码的其他译码算法9.7.4卷积码的错误概率界限9.8复合编码9.8.1乘积码9.8.2链接码9.8.3Turbo码9.8.4BCJR算法9.8.5Turbo码的性能9.9带限信道的编码9.9.1编码与调制的结合9.9.2网格编码调制9.10信道编码的实际应用9.10.1深层空间通信的编码9.10.2电话线路调制解调器的编码9.10.3光盘编码9.11深入学习习题第10章无线通信10.1衰落多径信道上的数字传输10.1.1时变多径信道的信道模型10.1.2衰落多径信道的信号设计10.1.3频率非选择性瑞利衰落信道上的二进制调制性能10.1.4通过信号分集提高系统性能10.1.5频率选择性信道的调制和解调--RAKE解调器10.1.6多天线系统和空时编码10.2连续载波相位调制10.2.1连续相位FSK(CPFSK)10.2.2连续相位调制(CPM)10.2.3CPFSK和CPM的频谱特性10.2.4CPM信号的解调和检测10.2.5CPM在AWGN信道和瑞利衰落信道中的性能10.3扩频通信系统10.3.1扩频数字通信系统的模型10.3.2直接序列扩频系统10.3.3直接序列扩频信号的应用10.3.4脉冲干扰和衰落的影响10.3.5PN序列的生成10.3.6跳频扩频10.3.7扩频系统的同步10.4数字蜂窝通信系统10.4.1GSM系统10.4.2基于IS-95的CDMA系统10.5深入学习习题附录A多信道二进制信号接收时的错误概率参考文献
2023/10/11 13:18:42 13.36MB 通信 系统
1
H3CNEGB0-191版本2020最新题库VCE,有需要者可自行下载使用好使好用,童叟无欺!!!以下工作于OSI参考模型数据链路层的设备是______。
(选择一项或多项)A.广域网交换机B.路由器网路层C.中继器物理层D.集线器物理层Answer:A
2023/9/27 18:55:44 2.84MB HC3NE
1
里面包含用中继器做的折线图、柱状图、等等excel中的所有图,可以直接更改数据!
2023/9/6 22:50:41 205KB Axure
1
光纤比电线可以携带更多高速信号,但需用中继器提高信号电平。
当今商业光纤系统的中继器都是电光混合型,它检测光信号,并把后者变成电信号,然后用电学方法放大,再去驱动光学发射机。
美国、英国和日本的研究人员正在发展一种把光信号放大(不需变成电信号)的新方法。
2023/7/9 13:05:22 653KB
1
共 18 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡