口发明名称基于单片机的电流信号检测装置摘要本发明公开了一种基于单片机的小信号手持式检测装置,包括多个电压信号处理模块。
采用功率放大电路推动负载、自制电流传感器检测电流信号,经过电流信号调理后,用芯片中的模块进行采样、处理分析及转换显示输出
2025/1/21 21:29:44 478KB
1
用于上采样(DUC)上变频的半带滤波器设计仿真代码python
2025/1/18 21:48:41 1KB 上采样 半带滤波器 halfband fil
1
(一)信号一段语音信号(一个词或词组,2秒左右),采样频率应在8kHz以上。
(二)要求1. 分别用MATLAB作出短时傅立叶变换、Wigner-Ville分布和小波变换的时频分布图;
2. 列出公式,画出所有图谱;
3. 讨论三种时频分布的结果与特点。
1
课程实践成果,单机版自动识别节奏点音游,差强人意。
通过MediaStore.Audio.Media.EXTERNAL_CONTENT_URI读取本地曲库,音频采样、FFT快速傅里叶变换自动识别节奏点,ObjectAnimatior设置滑块滑动,Toast实现点击的missgoodbest提示效果,可兼容不同分辨率。
2025/1/11 13:07:12 16.74MB android实践 音游
1
重采样工具Python中的哥白尼全球土地服务重新采样工具该笔记本演示了如何将哥白尼全球土地服务(CGLS)植被相关产品(即NDVI,FAPAR...)从标称分辨率333m分辨率重新采样到1km。
适用于希望在切换到新的333m基准分辨率之前,近乎实时地暂时延续其1km时间序列的用户。
用户可以对旧的(非实时)333m产品应用此处显示的重采样方法,并将结果与​​同一时期的1km产品相关联。
该文档提供了1km重采样的数据层和1km产生的数据层之间的比较结果。
1
这是基于STM32F407的数字语音存储回放,采样率为8K,ADC接口是GPIOA(5),DAC接口是GPIOA(4),开始键是GPIOA(0),,暂停键是GPIOE(1),开始DAC输出键是GPIOE(4),存储时间是40S左右。
2024/12/28 13:28:22 8.83MB STM32F407 Flash 语音存储
1
本文对数字调制中的2FSK采用matlab进行了仿真实验,代码中没有加入噪声,采用相干解调的解调方式。
(一)、代码的流程如下:(1)、设置载波频率,码元频率(本文中即比特率)和采样率;
(2)、产生2FSK信号;
(3)、信号分别经过两个带通滤波器后得到band_passed_sig1和band_passed_sig2;
(4)、对band_passed_sig1和band_passed_sig2分别进行相干解调,再分别进行低通滤波得到lower_sig1和lower_sig2;
(5)、对lower_sig1和lower_sig2进行抽样判决得到输出信号;
(6)、统计无码率;
(二)、2FSK进行matlab仿真的疑难点:(1)、相干解调采用的“同频同相的载波”的获取。
由于信号经过带通滤波器之后(本文采用的是FIR线性相位数字滤波器)会出现相移,所以不能直接用调制时候的载波信号与此时的band_passed_sig1信号相乘来相干解调,此时用来相干解调的载波应该与经过滤波器之后出现相移的“载波”信号同频同相,本文代码中直接采用band_passed_sig1.*band_passed_sig1的方式进行相干解调,这点需要读者细心斟酌一下(其实不难理解的)。
(2)、抽样判决的判决时刻选择。
据笔者观察,经过低通滤波器之后得到的信号会出现时移(延时)的情况,建议读者可以先设置10个码元个数,观察一下低通滤波器的输出波形,然后再选择波形峰值时刻作为抽样判决时刻。
本文的代码中是采用每一个码元的结束时刻作为抽样判决时刻,这是笔者通过观察低通滤波器的输出波形后得到的,不具有通用性。
时移的原因,笔者觉得是因为FIR数字滤波器的线性相位所导致的,但是怎么个时移法,笔者目前还没有弄明白(数字信号处理学的不够好),还有待探究。
2024/12/27 13:52:15 2KB FSK matlab
1
2.2修正一个显示文字错误,功能没有影响。
//2.1对2.0版本的改进:1、幅度超过32767时,超过部分限幅,此特性可以生成梯形波2、双声道下,可设声道间相位差总功能:生成正弦波形的音频文件,格式是wav,精度16bit。
可设置采样率,正弦频率,幅度,声道,声道间相位差,添加1bit随机噪声。
详细用法见:https://blog.csdn.net/mubo814/article/details/90815909
2024/12/23 11:16:31 8KB 任意设置
1
解压后,直接用LabVIEW8.2打开即可内容包括1、实现了虚拟信号发生器的仿真显示。
在虚拟信号发生器的图形显示窗上观察模拟输出信号的波形,有正弦波、方波、三角波。
3、实现了虚拟信号发生器的模拟信号输出。
①在设定频率、相位、采样频率、幅值后,输出正弦波、方波、三角波信号,并频率计测量信号频率。
②滤波。
选择不同的截止频率对输出信号进行滤波。
2024/12/22 13:43:58 57KB LabVIEW
1
一个不错的串口波形显示软件,[_setup_]port=COM3//这个是返回数据的端口号baudrate=19200//比特率和你设备实际速率必须匹配,否则接到的都是乱码width=1000//绘图区域的宽度,数据多的还是适当加宽,或者改变采样率height=200//绘图区域高度建议不要太高background_color=white//背景色grid_h_origin=100grid_h_step=10grid_h_color=#EEE//格子颜色grid_h_origin_color=#CCC//起始颜色grid_v_origin=12grid_v_step=10grid_v_color=#1EEgrid_v_origin_color=greem[_default_]//这个里面是整体的全局参数,如在子字段不做另外定义,都按照这个来min=0//数据最小值;max=1024//数据最大值[Field1]//字段1color=gray//线条颜色[Field2]color=blue[Field3]color=red
2024/12/21 8:39:22 4.27MB 串口波形
1
共 482 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡