经典的天线书籍
2025/5/18 10:40:58 53.49MB Antenna handbook
1
涡旋盘法是一种在航空航天工程中用于计算空气动力学特性,特别是翼型或机翼表面流场的方法。
NACA2412是一个经典的翼型,广泛应用于教学和研究。
这个翼型是由美国国家航空咨询委员会(NACA)设计的,其命名规则中的“2412”表示了翼型的厚度分布特性:2%的最大厚度位置位于弦长的12%处。
NACA系列翼型因其简单而实用的设计,被众多飞行器采用。
在这个项目中,我们看到与MATLAB相关的开发工作,这表明作者可能使用MATLAB编程语言来实现涡旋盘法对NACA2412翼型的流体力学计算。
MATLAB是一款强大的数值计算和数据可视化软件,尤其适合进行复杂的数学运算和算法开发。
在航空航天领域,MATLAB常用于仿真、优化和数据分析。
"Panel_Coordinates.m.zip"是压缩包内的文件,根据名字推测,它可能包含了一个名为"Panel_Coordinates"的MATLAB脚本或函数。
在流体动力学中,面板方法是一种常用的技术,通过将翼型表面划分为多个小的二维平面元素(面板),然后对每个面板应用边界层理论来近似翼型周围的流动情况。
"Coordinates"部分暗示这个脚本可能负责定义这些面板的几何坐标,这是计算流场前的重要步骤。
在MATLAB中实现涡旋盘法,通常包括以下步骤:1.**翼型坐标定义**:读取或生成NACA2412翼型的参数化坐标,这通常涉及解决NACA翼型的四个参数方程。
2.**面板划分**:将翼型表面划分为多个面板,每个面板具有自己的几何属性,如面积、中心位置等。
3.**涡旋强度分配**:为每个面板分配涡旋强度,这可能涉及到边界条件的设定,如无滑移边界条件(在翼型表面上)和自由流边界条件(在远处)。
4.**积分求解**:利用格林定理,通过对邻接面板间的积分,计算出各面板上的诱导速度和压力。
5.**迭代优化**:为了得到更精确的结果,可能需要进行迭代过程,不断调整面板上的涡旋强度,直到满足特定的收敛准则。
6.**结果可视化**:使用MATLAB的绘图工具展示流场信息,如速度矢量图、压力系数分布等。
通过这个MATLAB开发项目,用户可以深入理解涡旋盘法的基本原理,并实际操作实现对NACA2412翼型的流体力学分析。
这种方法不仅适用于学术研究,也有助于工程师在设计飞行器时评估其气动性能。
对于学习者来说,这是一个很好的实践案例,能够将理论知识与实际编程相结合,提升解决实际问题的能力。
2025/5/17 12:23:28 2KB matlab
1
BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
是第4版正式版不是prepress版。
本书是全球享有盛誉的技术作家JeffreyRichter的经典书籍CLRviaC#最新版第四版。
本书针对clr、C#5.0和.netframework4.5进行深入、全面的探讨,并结合实例介绍了如何利用它们进行设计、开发和调试。
本书深入、全面探讨.NETFramework、CRL和多核编程,广泛讨论FrameworkClassLibrary(FCL)核心类型,对泛型和线程处理等深奥难懂的开发概念提供权威、实用的指导。
2025/5/8 7:03:25 9.02MB c# .net
1
数学家的逻辑,很通俗易懂的逻辑学理论经典教材,程序员修炼之术,不易得
7.85MB 数理 逻辑
1
详细介绍了CVX的安装、使用以及有关语法,有经典示例,值得拥有!!!
1
将各种排序、搜速算法以及各种数据结构的相关算法,(例如:二叉树的建立、构造哈夫曼树的算法模拟、邻接表表示的图的广度优先搜索等)以flash动画的形式表现,原本很复杂抽象的算法知识(例如图的遍历/搜索)变得极其通俗易懂,如能将本动画作为阅读《算法导论》等算法巨作的配合材料,那么必然达到事半功倍的效果。
1
模拟CMOS集成电路设计(拉扎维)经典的cmos集成电路教程
2025/5/3 18:22:15 16.19MB CMOS集成电路
1
gitchat资料。
从零开始学习BP神经网络。
本文主要叙述了经典的全连接神经网络结构以及前向传播和反向传播的过程。
通过本文的学习,读者应该可以独立推导全连接神经网络的传播过程,对算法的细节烂熟于心。
另外,由于本文里的公式大部分是我自己推导的,所以可能会有瑕疵,希望读者不吝赐教。
  虽然这篇文章实现的例子并没有什么实际应用场景,但是自己推导一下这些数学公式对理解神经网络内部的原理很有帮助,继这篇博客之后,我还计划写一个如何自己推导并实现卷积神经网络的教程,如果有人感兴趣,请继续关注我!
1
找到的最清晰版本的了,自己两个小时加上书签目录,累死。


算法第四版是经典的算法书籍
2025/5/2 21:14:08 85.9MB 算法
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡