请将你的邮箱开启smtp服务(具体开启方法请在google百度一下163为smtp.163.comQQ为smtp.qq.com)由于代码中发送邮件开启了SSL加密,端口一般默认为465用户名一般为邮箱地址的名字去掉@后面几位(比如:123#163.com则用户名为123)部分邮箱开启smtp服务之后使用的验证密码并非邮件密码,而是授权码,请注意如果读取不到短信,注意授权相关的权限
2024/6/19 2:38:11 2.96MB 短信 邮箱
1
为了稳定地采用多频带kp模型来分析半导体异质结构中的无杂散解(SS)的能带结构,提出了一种用于有限差分法(FDM)的埃尔米特向前和向后差分(HFBD)方案。
HFBD是一种离散化方案,它消除了差异的不稳定性,并采用Burt-ForemanHermitian算子排序,而没有几何不对称性。
差异的不稳定性来自采用Foreman策略(FS)。
FS消除了散布曲线中非物理弯曲导致的SS,而HFBD是唯一可以准确适应它的差异方案。
与其他最新策略相比,本文提出的方法与FS一样准确,可靠,并且保留了FDM的快速性和简便性。
这种差异方案显示出稳定的收敛性,并且在可变网格大小下没有任何SS。
因此,无论它们最初生成的SS是什么,都可以使用这种方法将各种实验确定的频带参数应用于大规模稳定仿真。
2024/6/18 17:57:49 1.13MB 研究论文
1
freeswitch纯pdf版非扫描版freeswitch纯pdf版非扫描版freeswitch纯pdf版非扫描版
2024/6/18 16:05:22 10.94MB freeswitch
1
1本程序在vc++6.0编译通过并能正常运行。
2主界面程序已经尽量做到操作简便了,用户只需要根据提示一步步进行操作就行了。
六思考和总结:这个课程设计的各个基本操作大部分都在我的综合性实验中实现了,所以做这个主要攻克插入和删除这两个算法!其中插入在书本上已经有了,其中的右平衡算法虽然没有给出,但通过给出的左平衡算法很容易就可以写出右平衡算法。
所以最终的点就在于删除算法的实现!做的过程中对插入算法进行了非常非常多次的尝试!花了非常多的时间,这其中很多时候是在对程序进行单步调试,运用了VC6。
0的众多良好工具,也学到了很多它的许多好的调试手段。
其中删除算法中最难想到的一点是:在用叶子结点代替要删除的非叶子结点后,应该递归的运用删除算法去删除叶子结点!这就是整个算法的核心,其中很强烈得体会到的递归的强大,递归的最高境界(我暂时能看到的境界)!其它的都没什么了。
选做的那两个算法很容易实现的:1合并两棵平衡二叉排序树:只需遍历其中的一棵,将它的每一个元素插入到另一棵即可。
2拆分两棵平衡二叉排序树:只需以根结点为中心,左子树独立为一棵,右子树独立为一棵,最后将根插入到左子树或右子树即可。
BSTreeEmpty(BSTreeT)初始条件:平衡二叉排序树存在。
操作结果:若T为空平衡二叉排序树,则返回TRUE,否则FALSE.BSTreeDepth(BSTreeT)初始条件:平衡二叉排序树存在。
操作结果:返回T的深度。
LeafNum(BSTreeT)求叶子结点数,非递归中序遍历NodeNum(BSTreeT)求结点数,非递归中序遍历DestoryBSTree(BSTree*T)后序遍历销毁平衡二叉排序树TR_Rotate(BSTree*p)对以*p为根的平衡二叉排序树作右旋处理,处理之后p指向新的树根结点即旋转处理之前的左子树的根结点L_Rotate(BSTree*p)对以*p为根的平衡二叉排序树作左旋处理,处理之后p指向新的树根结点,即旋转处理之前的右子树的根结点LeftBalance(BSTree*T)对以指针T所指结点为根的平衡二叉排序树作左平衡旋转处理,本算法结束时,指针T指向新的根结点RightBalance(BSTree*T)对以指针T所指结点为根的平衡二叉排序树作右平衡旋转处理,本算法结束时,指针T指向新的根结点Insert_AVL(BSTree*T,TElemTypee,int*taller)若在平衡的二叉排序树T中不存在和e有相同的关键字的结点,则插入一个数据元素为e的新结点,并返回OK,否则返回ERROR.若因插入而使二叉排序树失去平衡,则作平衡旋转处理布尔变量taller反映T长高与否InOrderTraverse(BSTreeT)递归中序遍历输出平衡二叉排序树SearchBST(BSTreeT,TElemTypee,BSTree*f,BSTree*p)在根指针T所指的平衡二叉排序树中递归的查找其元素值等于e的数据元素,若查找成功,则指针p指向该数据元素结点,并返回TRUE,否则指针p指向查找路径上访问的最后一个结点并返回FALSE,指针f指向T的双亲,其初始调用值为NULLDelete_AVL(BSTree*T,TElemTypee,int*shorter)在平衡二叉排序树中删除元素值为e的结点,成功返回OK,失败返回ERRORPrintBSTree_GList(BSTreeT)以广义表形式打印出来PrintBSTree_AoList(BSTreeT,intlength)以凹入表形式打印,length初始值为0Combine_Two_AVL(BSTree*T1,BSTreeT2)合并两棵平衡二叉排序树Split_AVL(BSTreeT,BSTree*T1,BSTree*T2)拆分两棵平衡二叉树}(2)存储结构的定义:typedefstructBSTNode{ TElemTypedata; intbf;//结点的平衡因子 structBSTNode*lchild,*rchild;//左.右孩子指针}BSTNode,*BSTree;
1
1.以非图片方式在Datawindow中显示QR二维码2.GBK和UTF-8编码相互转换3.加密解密,RSA加密解密4.取汉字拼音首字母5.文件哈希算法:MD5、SHA1、RIPEMD160、SHA256、Tiger、SHA512、Whirlpool、CRC326.字符串哈希算法:MD5、SHA1、RIPEMD160、SHA256、Tiger、SHA512、Whirlpool、CRC327.URI编码解码8.Base64编码解码9.硬盘序列号10.http的POST和GET操作
2024/6/17 12:57:17 446KB QRCode hash 加密解密 硬盘序列号
1
alpha稳定分布产生非高斯的脉冲噪声序列,可用于alpha稳定分布的仿真,适合初学者
1
注意:本资源用于学习而非盈利,第三方若认为版权受侵可联系官方删帖
2024/6/15 17:12:23 604KB JAR
1
对称密码技术高级加密标准算法(AES)易于软件实现和硬件实现,并且具有加密速度快、内存消耗小、抵抗多种人为攻击、操作简单等优越性。
非对称密码技术椭圆曲线加密(ECC)是基于离散对数难题的,这使得对于相同长度的密钥来说,ECC加密更快、破解难度更大。
本文实现了128位密钥的AES算法,将原来的四步加密过程整合为两步,通过CBC或ECB两种分组模式加密明文数据。
同时也实现了在大素数域上的ECC算法,利用ECC实现生成用户公钥、私钥以及加密数据的高效、安全密钥管理机制。
通过将AES算法和ECC算法结合起来,实现混合加密,并应用在文件管理上体现其价值。
该系统内文件加密过程利用的是AES算法加密模块,在管理用户密钥方面利用了ECC算法加密模块,并实现多重加密来隐藏直接加密后密文内的重要参数。
该系统可以安全、有序的管理用户拥有的重要文件。
2024/6/15 15:01:35 1.53MB AES ECC 大素数域
1
非齐次非线性Schrodinger方程爆破解的L2-集中率,张健,朱世辉,本文研究临界幂非线性项的非齐次Schrodinger方程的爆破解.利用对应基态变分特征,我们得到爆破解的爆破速率以及爆破解的L2-集中率。
2024/6/15 2:08:25 156KB 首发论文
1
区块链随着其技术和理念的不断成熟,正式步入以可编程社会为主要特征的3.0阶段,即区块链将逐渐从虚拟世界渗透到现实生活的方方面面,而电子商务正是现阶段连接现实与虚拟的最佳契机。
区块链的非中心化、智能合约、不可篡改等特性恰好能够应对电子商务信息不安全、交易不公信等发展难点。
利用区块链相关技术特征及模式理念架构电子商务核心模块中的流通体系、支付体系、信用体系,可实现电子商务信息价值链的互联互通;从电子商务平台的用户视角出发,对电子商务运行的应用流程及运营架构进行优化,可大幅提升用户的服务体验,同时避免信息泄露风险,减少过程冗余发生。
但是,基于区块链的电子商务在未来发展中也面临着资源风险、技术风险以及
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡