IBM网页制作2001简体中文版简介简介:中文名:IBM网页制作2001英文名:IBMWebSphereHomePageBuilder2001资源格式:光盘镜像版本:零售版发行时间:2000年07月制作发行:IBM地区:美国简介:IBM之名大名鼎鼎,如雷贯耳,它最近推出的三款完全针对中国用户的软件:智能词典2000、翻译家2000、网页制作2001,它们的作用主要面向因特网的应用,相互之间相辅相成,加之三者同时推出,姑且就叫它们“三剑客”吧。
在仰仗IBM的盛名之下,当然就怀着一种崇敬、憧憬的心情在第一时间把它请回家里,准备一睹它们的英姿。
IBM网页制作2001是一个四合一的超级网站制作软件包,它将网页的制作、动画设计、美术设计和文件上传集中到一个平台下,给你意想不到的方便网页制作提供了一个资源相当丰富的素材库,你可直接调用包括动画、按钮、图表、背景图像、Webart和各种网页样式、声音效果以及java小程序等等设计精良的网页素材,以及150多个页面模版。
网页动画设计让你轻松地完成动画设计并直接传送至网页制作程序中进行再编辑。
网页美术设计是专门针对网页美术制作中经常要用到的动态按钮、网站徽标、鼠标响应动画以及各种网页素材进行编辑制作,同样也可直接将作品传送至网页制作软件中再编辑。
57.55MB 做图
1
设计一个SP00LING输出进程和两个请求输出的用户进程,以及一个SP00LING输出服务程序。
当请求输出的用户进程希望输出一系列信息时,调用输出服务程序,由输出服务程序将该信息送入输出井。
待遇到一个输出结束标志时,表示进程该次的输出文件输出结束。
之后,申请一个输出请求块(用来记录请求输出的用户进程的名字、信息在输出井中的位置、要输出信息的长度等),等待SP00LING进程进行输出。
SP00LING输出进程工作时,根据请求块记录的各进程要输出的信息,将其实际输出到打印机或显示器。
这里,SP00LING输出进程与请求输出的用户进程可并发运行。
(1)功能分析当输入“第一个用户进程的请求为:”,“第二个用户进程的请求为:”后,按下“确定”键,再右侧文本区中将显示两个请求输出的用户进程请求的数据,以及SPOOLING输出进程输出的数据。
其中两个请求输出的用户进程的调度的概率各为0.45,SPOOLING输出进程的调度为0.10,该调度以随机数发生器产生的随机数来模拟。
(2)进程状态进程基本状态有3种,分别为可执行、等待和结束。
可执行态就是进程正在运行或等待调度的状态;
等待状态又分为等待状态1、等待状态2和等待状态3。
状态变化的条件为:①进程执行完成时,置为“结束”态。
②服务程序在将输出信息送输出井时,如发现输出井已满,将调用进程置为“等待状态1”。
③SP00LING进程在进行输出时,若输出井空,则进入“等待状态2”。
④SP00LING进程输出一个信息块后,应立即释放该信息块所占的输出井空间,并将正在等待输出的进程置为“可执行状态”。
⑤服务程序在输出信息到输出井并形成输出请求信息块后,若SP00LING进程处于等待态,则将其置为“可执行状态”。
⑥当用户进程申请请求输出块时,若没有可用请求块时,调用进程进人“等待状态3”。
2024/5/4 18:22:36 9KB spooling 假脱机 JAVA
1
非常清晰,共14章第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1§1.1测绘学的任务及作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1§1.2数字测图的发展概况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3§1.3学习数字测图原理与方法的目的和要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4第二章测量的基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6§2.1地球形状和大小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6§2.2测量常用坐标系和参考椭球定位⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8§2.3地图投影和高斯平面直角坐标系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12§2.4高程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19§2.5用水平面代替水准面的限度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20§2.6方位角⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22§2.7地形图的基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24§2.8地形图的分幅与编号⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31第三章测量误差基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42§3.1观测误差的分类⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42§3.2衡量精度的标准⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45§3.3算术平均值及观测值的中误差⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯48§3.4误差传播定律⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯51§3.5加权平均值及其精度评定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55§3.6间接平差原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯58第四章水准测量和水准仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62§4.1水准测量原理与方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62§4.2水准仪和水准尺⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯65§4.3水准测量外业施测⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81§4.4水准测量的误差分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯88目录1§4.5水准仪的检验与校正⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯90第五章角度、距离测量与全站仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103§5.1角度测量原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103§5.2经纬仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯104§5.3角度观测方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯115§5.4水平角观测的误差和精度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123§5.5经纬仪的检验和校正⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯132§5.6距离测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯137§5.7光电测距误差分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯154§5.8光电测距仪的检验⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯158§5.9全站仪和自动全站仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯162§5.10三角高程测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯166第六章控制测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯172§6.1控制测量概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯172§6.2导线测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯181§6.3交会测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯195§6.4三角网测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯204§6.5高程控制测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯210§6.6全球定位系统(GPS)在控制测量中的应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯219第七章碎部测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯226§7.1碎部
2024/5/3 12:48:14 5.65MB 测绘
1
排序作业选择题(每题2分,共22分)。
1.若表R在排序前已按键值递增顺序排列,则(  )算法的比较次数最少。
A.直接插入排序           B.快速排序     C.归并排序               D.选择排序2.对各种内部排序方法来说,(  )。
A.快速排序时间性能最佳                           B.归并排序是稳定的排序方法C.快速排序是一种选择排序                        D.堆排序所用的辅助空间比较大3. 排序算法的稳定性是指(  )。
A.经过排序之后,能使值相同的数据保持原顺序中的相对位置不变。
B.经过排序之后,能使值相同的数据保持原顺序中的绝对位置不变。
C.排序算法的性能与被排序元素的数量关系不大D.排序算法的性能与被排序元素的数量关系密切4.如下序列中,(  )序列是大顶堆。
A. {4,5,3,2,1}              B. {5,3,4,1,2}       C. {1,2,3,4,5}              D. {1,2,3,5,4}5.若将{3,2,5,4,1}排为升序,则实施快速排序一趟后的结果是(  )(其中,枢轴记录取首记录)。
A. {1,2,3,4,5}                 B. {1,2,4,5,3}       C. {1,3,5,4,2}                 D. {2,5,4,1,3}.若将{1,2,3,4,5,6,7,9,8}排为升序,则(  )排序方法的“比较记录”次数最少。
A. 快速排序                  B. 简单选择排序    C. 直接插入排序              D. 冒泡排序7.若将{5,4,3,2,1}排为升序,则(  )排序方法的“移动记录”次数最多。
A. 快速排序                               B. 冒泡排序C. 直接插入排序                      D. 简单选择排序8.用简单选择排序将顺序表{2,3,1,3′,2′}排为升序,实施排序1趟后结果是{1,3,2,3′,2′},则排序3趟后的结果是(  )。
A. {1,2,3,3′,2′}                      B. {1,2,2′,3,3′}C. {1,2′,2,3,3′}                     D. {1,2,2′,3′,3}9.下列排序算法中,(   )排序在某趟结束后不一定选出一个元素放到其最终的位置上。
A.选择            B.冒泡          C.归并          D.堆10.下列排序算法中,稳定的排序算法是( )。
A.堆排序               B.直接插入排序  C.快速排序             D.希尔排序11.堆排序的时间复杂度是(   )。
A.O(n*n)                B.O(n*logn)      C.O(n)                  D.O(logn)填空题(每空4分,共4分)。
对n个元素进行归并排序,空间复杂度为        。
综合题(共24分)。
1.(共12分)有一组待排序的关键字如下:(54,38,96,23,15,72,60,45,83)分别写出希尔排序(d=5)、快速排序、堆排序、归并排序第一趟升序排序后的结果(其中堆排序的第一趟指序列完成初始建堆、将堆顶元素置为最末位置后其余元素调整为堆的结果)(每个3分)。
希尔排序:  快速排序:堆排序:归并排序: 2.(共12分)已知数据序列为(12,5,9,20,6,31,24),对该项数据序列进行排序,分别写出直接插入排序、简单选择排序、快速排序、堆排序、二路归并排序及基数排序第一趟升序排序结果(其中堆排序的第一趟指序列完成初始建堆、将堆顶元素置为最末位置后其余元素调整为堆的结果)(每个2分)。
直接插入排序:简单选择排序:快速排序:堆排序:二路归并排序:基数排序:
2024/5/3 7:27:51 15KB 排序作业 数据结构
1
火龙果软件工程技术中心  本文内容包括:程序人员了解什么是:串行和并行开发一个串行例子一个并行例子作出决策:串行或并行开发?附录:存档工具程序感谢说明如果你正在使用Rational:registered:RequisitePro:registered:中的基于文档的需求,并且你已经在你的公司里成功地实施了RationalUnifiedProcess:registered:和Rational工具,那么你就已经有了一个“团队组的团队”如何学会在RUP的工作流程之下一起工作的第一手经验。
当我们的几个项目经理自告奋勇地按照一个方案,通过并行的、非重叠的迭代来缩短开发时间,并且更好地利用他们的开发资源时,我们就处于这个阶段了。
他们不断地问,“为什么我们要在分析师编写用
1
尚硅谷发布的周阳老师讲授的SpringCloud,讲的非常好,深入简出了解SpringCloud第一季核心技术,这个是本人在学习时亲手整理的笔记,希望对大家有帮助。
2024/5/3 0:30:35 1.46MB SpringCloud Java 尚硅谷 周阳
1
第一章数据库介绍第二章数据库基础知识第三章SQL语法入门第四章SQL语法分类第五章数据库安全基础第六章数据库开发环境第七章数据库设计基础第八章华为GaussDB数据库
2024/5/1 17:28:39 7.69MB 高斯数据库 HCIA-GaussDB 华为认证
1
第一节课程概述第二节如何理解企业内部的培训。
第三节有效地了解你的培训对象。
第四节如何进行培训前的准备第五节培训中个人培训技巧的运用第六节正确运用视觉器材第七节培训中场合的控制技巧回顾与总结
2024/5/1 8:57:16 1.13MB 企业内部培训师培训技巧
1
这本教科书是针对大学数学课程的第一门课程设计的,向学生介绍了构建和编写证明的过程。
2024/5/1 4:15:26 93B 计算机科学
1
漏洞扫描就是对计算机系统或者其它网络设备进行安全相关的检测,以找出安全隐患和可被黑客利用的漏洞。
显然,漏洞扫描软件是把双刃剑,黑客利用它入侵系统,而系统管理员掌握它以后又可以有效的防范黑客入侵。
因此,漏洞扫描是保证系统和网络安全必不可少的手段,必须仔细研究利用。
漏洞扫描通常采用两种策略,第一种是被动式策略,第二种是主动式策略。
所谓被动式策略就是基于主机之上,对系统中不合适的设置,脆弱的口令以及其他同安全规则抵触的对象进行检查;
而主动式策略是基于网络的,它通过执行一些脚本文件模拟对系统进行攻击的行为并记录系统的反应,从而发现其中的漏洞。
利用被动式策略扫描称为系统安全扫描,利用主动式策略扫描称为网
2024/4/30 14:02:51 246KB 如何使用Nessus扫描漏洞
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡