《深入浅出数字信号处理》从直观、概念化、非数学的角度,充分利用向量这个简单而又直观的工具,辅以大量的实例、图片,深入浅出地探讨了数字信号处理的基本概念及其应用,为读者理解数字信号处理提供了一种全新的思路和方法。
全书紧紧围绕频谱分析和数字滤波这两个中心展开论述。
全书共分9章。
第1章概述了数字信号处理的发展和应用。
第2章和第3章主要介绍了信号和线性时不变系统的一些基本概念。
第4章介绍了信号与系统的相互作用,包括卷积与相关。
第5章和第6章分别介绍了频谱分析的最主要工具DFT及其快速算法FFT。
第7-9章主要介绍了数字滤波器的原理、实现与应用等问题。
压缩包含全书matlab代码
2023/7/13 8:26:36 28.24MB 数字信号处理 DSP matlab
1
随着科学技术的不断发展,人们所需管理的信息逐渐变多,使快速并准确地在信息库里搜索出自己所需的信息成为了一件难事。
因此,为了让大家更好地管理自己的手中的信息,本文设计出一个基于B/S模式的南昌工程学院社联社团管理系统以方便南昌工程学院社团联合会的人员更好地管理他们手中的信息。
该系统是在MyEclipse8.5集成开发工具和Apache的tomcat服务器环境下,结合JSP、JDBC、struts2和jQuery框架等技术完成的。
其数据库系统和主要开发语言用的分别采用MySQL和Java。
其主要模块有:会员登录、会员账号管理、社团等模块,具体实现了:会员注册,会员权限管理,社团物品管理、活动管理、经费管理等功能。
1
近年来,在高性能全数字控制的电气传动系统中,作为电力电子逆变技术的关键,pwm技术从最初追求电压波形正弦,到电流波形正弦,再到磁通的正弦,取得了突飞猛进的发展[1]。
在众多正弦脉宽调制技术中,空间电压矢量pwm(或称svpwm)是一种优化的pwm技术,能明显减小逆变器输出电流的谐波成分及电机的谐波损耗,降低脉动转矩,且其控制简单,数字化实现方便,电压利用率高,已有取代传统spwm的趋势。
本文对空间电压矢量pwm的原理进行了深入分析,重点推导了每一扇区开关矢量的导通时间,并在ti公司生产的dsp上实现三相逆变器的控制,证明了分析的正确和可行性。
2023/7/12 18:50:25 424KB svpwm程序
1
compose-regexp.js用JavaScript构建和编写可维护的正则表达式。
正则表达式不能正确对待正则语法。
正规的语法/语言形式主义全都与。
但是RegExps被设计为ed和grep等。
使用RegExp文字无法从较小的抽象模式构建大型表达式。
这使得复杂的RegExps难以阅读,调试和修改...compose-regexp可以解救!它并不能使常规语法变得更强大,但它们上仍然,但是由于它们无处不在,因此我们也可能拥有更好的工具来实现它们……用法$npminstall--savecompose-regexpimport{sequence,either,capture,  ref,suffix,flags,avoid}from"compose-regexp";//canberequire
2023/7/12 13:46:05 14KB JavaScript
1
最新电磁兼容标准。
与之前08版标准,内容有所变动。
本标准规是GB∕T17626.4-2018电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验。
2023/7/11 4:56:50 3.39MB GB∕T 17626.4 最新电磁兼容标准
1
Harris是一种高效的角点检测算法,但不具备尺度不变性。
SURF(speeded-uprobustfeatures)算法虽然能很好地解决图像尺度变化问题,但是在特征点提取方面没有Harris稳定。
针对Harris和SURF两种算法的特点,提出一种新的Harris-SURF特征点提取算法。
首先用Harris算法检测图像角点,再用SURF算法提取图像特征点;
然后合并角点和特征点,并剔除重复点获得新的特征点集,确定新特征点的主方向并生成特征描述符,再对图像使用比值法进行初匹配;
最后利用RANSAC剔除错误匹配点实现精确匹配。
实验结果表明,该算法对图像存在旋转、缩放、光照及噪声变化有较强的鲁棒性,同时提高了运行效率。
1
可以进行管网平差、管网水力模拟和建立水质模型的软件,EPANET作为一套功能齐全、界面友好、易于使用的优秀免费软件,得到广泛应用,成为许多商业软件的核心,也为输配水系统的科学研究提供了便利。
什么是EPANETH?EPANETH软件是美国环保局软件EPANET的汉化版本,是一个可以执行有压管网水力和水质特性延时模拟的计算机程序。
管网包括管道、节点(管道连接节点)、水泵、阀门和蓄水池(或者水库)等组件。
EPANETH可跟踪延时阶段管道水流、节点压力、水池水位高度以及整个管网中化学物质的浓度。
除了模拟延时阶段的化学成分,也可以模拟水龄和进行源头跟踪。
EPANETH开发的目的是为了改善对配水系统中物质迁移转化规律的理解。
它可以实现许多不同类型的配水系统分析。
采样程序设计、水力模型校验、余氯分析以及用户暴露评价就是一些例子。
EPANETH有助于评价整个系统水质改善的不同管理策略,这些可能包括:改变多水源供水系统的水源配置;
改变水泵提升和水池注水/放水时间调度安排;
水处理的补充措施,例如蓄水池中重新加氯;
管道清洗和替换。
在Windows环境下,EPANETH提供了管网输入数据编辑、水力和水质模拟,以及以各种方式显示计算结果的集成环境。
结果的表达形式包括管网地图颜色表示、数据表格、时间序列图和等值线图等。
水力模拟能力完整和精确的水力模拟是有效水质模拟的先决条件。
EPANETH包含了先进的水力分析引擎,具有以下功能:对管网规模未加限制;
可利用Hazen-Williams,Darcy-Weisbach或Chezy-Manning公式计算摩擦水头损失;
包含了弯头、附件等处的局部水头损失计算;
可模拟恒速和变速水泵;
可进行水泵提升能量和成本分析;
可模拟各种类型的阀门,包括遮蔽阀、止回阀、调压阀和流量控制阀;
允许包含各种形状的蓄水池(即直径可以随高度变化);
考虑节点多需水量类型,每一节点可具有自己的时变模式;
可模拟依赖于压力的流量,例如扩散器(喷头水头);
系统运行能够基于简单水池水位或者计时器控制,以及基于规则的复杂控制水质模拟能力EPANETH提供了以下水质模拟能力:模拟管网中非反应性示踪剂随时间的运动;
模拟反应物质的运动变化,它可以随时间增长(例如消毒副产物)或者降低(例如余氯);
2模拟整个管网的水龄;
跟踪从已知节点来的水流百分比;
模拟主流水体和管壁处的反应;
利用n级反应动力学模拟主流水体中的反应;
利用零级或者一级反应动力学模拟管壁处的反应;
模拟管壁处的反应时可考虑质量转移限值;
允许持续达到一个极限浓度的增长或者衰减反应;
利用全局反应速率系数,可在单管道基础上纠正;
允许管网中任何位置的时间变化浓度或者质量输入;
将蓄水池作为完全混合、柱塞流或者双室反应器进行模拟。
通过利用这些特性,EPANETH能够研究以下水质现象:不同水源来水的混合;
整个系统的水龄;
余氯的损失;
消毒副产物的增长;
污染事件跟踪。
2023/7/9 13:15:32 2.47MB epaneth epanet 中文版
1
非酒精性脂肪肝疾病(NAFLD)的特征是大量脂质滴(LDs)积聚。
这项研究的目的是确定17β-羟类固醇脱氢酶13(17beta-HSD13)在我们的肝脏组织学正常且具有简单脂肪变性的人类受试者中新近鉴定出的LD相关蛋白之一在NAFLD发育中的功能。
从21例人类肝脏活组织检查样本中分离出来,包括9例肝组织学正常的患者(第1组)和12例单纯脂肪变性的患者(第2组)。
通过2DLC-MS/MS测定了来自第1组或第2组的三个肝脏样品的LD相关蛋白的完整集合。
通过比较有或没有NAFLD的受试者之间的LD相关蛋白谱,在NAFLD患者中发现了54个上调的LD相关蛋白和35个下调的LD相关蛋白。
其中,17β-HSD13代表以前未鉴定的LD相关蛋白,在NAFLD中有明显的上调。
由于17β-HSD家族在脂质代谢中起着重要作用,因此选择17β-HSD13来验证蛋白质组学发现并探索其在NAFLD发病机理中的作用。
在db/db(糖尿病)和高脂饮食喂养的小鼠中证实了肝17β-HSD13的增加及其LD表面的位置。
腺病毒介导的人17β-HSD13肝过度表达在C57BL/6小鼠中诱导了脂肪肝
2023/7/8 13:54:30 1.62MB lipogenesis; SCDR9; HSDI7 beta
1
滑模变结构控制第三版matlab仿真程序,对于滑滑模控制的入门理解和编程参考很有帮助!!!
2023/7/8 10:53:06 814KB 滑模控制 matlab
1
WEB标准提倡结构、表现和行为相分离,现在越来越多采用这种表现和行为的方式,但它也为我们开发调试带来一些问题,网页载入一堆JavaScript,,我们很难搞清楚最后在哪些元素的哪个动作绑定了事件,尤其是JavaScript加载事件的方式五花八门,可以透过jQuery、element.click=function(){}、element.addEventListener()…,很难由单一处找出所有事件。
而理不清事件来龙去脉,要追踪某个点击动作背后的行为就变得有些困难,直到我们遇到chrome的插件VisualEvent。
2023/7/8 0:29:58 5KB Chrome Visual Event
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡