步态识别的准确性容易受到衣着类型及携带背包等局部变化的影响。
针对这一问题,首先提出一种基于局部信息熵值的子模式划分方法;
然后对正常行走和局部变化两种状态下的每一对子特征进行典型相关分析,得到多个最佳投影矩阵对,并将子特征分别投影到基于上述最佳投影矩阵对的特征子空间中;
最后以整体相关系数作为分类依据,以减小局部变化对于整体识别结果的影响。
在CASIA-B数据库上的实验表明在所有视角下所提算法都能取得较好的性能。
1
数字电路仿真实验报告,用Multisim软件仿真数字频率计。
2025/2/21 4:52:04 303KB multisim仿真
1
本说明文档主要包括三部分,第一部分为实验环境搭建,第二部分为通信过程介绍,第三部分为代码说明。
2025/2/20 20:32:56 497KB 计算机技术
1
还在为找不到实验报告而发愁么,赶快来看看吧,虽然不是很好,一点借鉴意义还是有的哦!
2025/2/20 20:11:12 727KB JavaEE
1
实验要求:编写两个计算机程序P1,P2。
P1模拟发送方:首先从界面读取待发送的字符(每接受一个字符的输入),保存到文件file1.txt中,并启动计时器;
P2模拟接受方,它从file1.txt中查找是否有新字符到来,并提供模拟界面给用户选择:1.Ack——>接受该字符2.NAK——>丢弃3.无反应——>导致超时将用户选择的结果记录到file2.txt中,接受的字符保存到file3.txt中。
2025/2/20 16:52:04 5.6MB ARQ协议
1
STM32F103C8T6驱动8线的TFT屏幕,驱动用寄存器操作,刷屏速度快。
STM32F10xLCD12864完整驱动程序,可以显示图像,字符串,浮点数,整数。
有闪烁、移位函数。
还有其他一些函数~~~~
2025/2/20 12:21:15 6.09MB STM32   LCD12864 并口驱动实验 驱动8线
1
……有详细分析报告……实验内容[问题描述]  对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]   以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】  由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
2025/2/20 6:49:22 12KB 遍历
1
运用杂化密度泛函方法(DFT)B3LYP,在LANL2DZ赝势基组水平上对Yn(n=2~10)团簇的多种可能初始构型进行了结构优化和频率及光谱分析,根据能量最低原则确认了Yn(n=2~10)团簇没有虚频的基态结构,且计算得到的结构比以往理论计算得到的结构能量更低,Y2振动频率ωe=188.9cm-1比以往计算值更接近实验值184.4cm-1,在此基础上研究了团簇的稳定性和极化率,并分析了Yn(n=2~10)团簇的光谱性能。
结果表明,Y7为所研究团簇结构转折点,团簇的电子稳定性随着原子数增加而逐渐减弱。
振动光谱分析表明,Yn(n=2~10)团簇中具有较高对称性的C2v和Cs点群具有更多的振动模式,而稳定性较强的Y7和Y9在所研究频段内分别有较好的红外和拉曼活性,有明显的共振现象。
2025/2/20 6:43:34 1.14MB 材料 光谱学 Yn(n=2~10 密度泛函
1
学习系统辨识课程时候的实验作业,仅供大家参考~~~
2025/2/20 3:06:28 143KB MATLAB 系统辨识 相关分析法
1
非下采样Contourlet变换(NonsubsampledContourletTransform,NSCT)是一种多分辨率分析方法,它结合了小波变换的多尺度特性与Contourlet变换的方向敏感性。
NSCT在图像处理和计算机视觉领域有广泛的应用,如图像压缩、图像增强、噪声去除和图像分割等。
这个“NSCT变换的工具箱”提供了实现NSCT算法的软件工具,对于研究和应用NSCT的人来说,是一个非常实用的资源。
非下采样Contourlet变换的核心在于其能够提供多方向、多尺度的图像表示。
与传统的Contourlet变换相比,NSCT不进行下采样操作,这避免了信息损失,保持了图像的原始分辨率。
这种特性使得NSCT在处理高分辨率图像时具有优势,特别是在保留细节信息方面。
NSCT工具箱通常包含以下功能:1.**NSCT变换**:对输入图像执行非下采样Contourlet变换,将图像分解为多个方向和尺度的系数。
2.**逆NSCT变换**:将NSCT系数重构回原始图像,恢复图像的完整信息。
3.**图像压缩**:利用NSCT的系数对图像进行编码,实现高效的图像压缩。
由于NSCT在高频部分有更好的表示能力,因此在压缩过程中可以有效减少冗余信息,提高压缩比。
4.**图像增强**:通过调整NSCT系数,可以对图像进行有针对性的增强,比如增强边缘或抑制噪声。
5.**噪声去除**:利用NSCT的多尺度和方向特性,可以有效地分离噪声和信号,实现图像去噪。
6.**图像分割**:在NSCT域中,图像的特征更加明显,有助于进行图像区域划分和目标检测。
该工具箱可能还包括一些辅助函数,如可视化NSCT系数、性能评估、参数设置等功能,方便用户进行各种实验和分析。
使用这个工具箱,研究人员和工程师可以快速地实现NSCT相关的算法,并在实际项目中进行测试和优化。
在使用NSCT工具箱时,需要注意以下几点:-输入图像的尺寸需要是2的幂,因为大多数NSCT实现依赖于离散小波变换,而DWT通常要求输入尺寸为二进制幂。
-工具箱可能需要用户自行配置或安装依赖库,例如MATLAB的WaveletToolbox或其他支持小波运算的库。
-NSCT变换的计算复杂度相对较高,特别是在处理大尺寸图像时,可能需要较长的计算时间。
-在处理不同类型的图像时,可能需要调整NSCT的参数,如方向滤波器的数量、分解层数等,以获得最佳性能。
"NSCT变换的工具箱"是一个强大的资源,对于那些希望探索非下采样Contourlet变换在图像处理中的潜力的人来说,这是一个必不可少的工具。
通过深入理解和熟练使用这个工具箱,可以进一步发掘NSCT在各种应用中的价值。
2025/2/20 0:32:26 132KB NSCT工具箱
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡