caffessd深度学习目标检测python代码,包括单线程和多线程,使用摄像头作为输入视频源。
2024/11/16 2:39:56 6KB caffe ssd python 深度学习
1
本文档中包含了关于深度学习的源代码,用matlab编写,有测试实例并且有相应结果输出,深度信念网络、卷积神经网络、自编码器、NN网络等可用代码,经测试没有任何错误可以直接下载运行!
2024/11/15 15:02:02 14.06MB 深度学习
1
SLAM技术是目前机器人、自动驾驶、增强现实等领域的关键技术之一,是智能移动平台感知周围环境的基础技术。
本文介绍了基于视觉传感器(单目、双目、RGB-D等相机)的SLAM技术的原理和研究现状,包括基于稀疏特征的SLAM、稠密/半稠密SLAM、语义SLAM和基于深度学习的SLAM。
然而,现有的系统与方法鲁棒性并不高,随着人工智能技术的发展,深度学习与传统的基于几何模型的方法相结合的趋势正在形成,这将推动视觉SLAM技术朝着长时间大范围实时语义应用的方向前进。
视觉SLAM算法的现状1、基于稀疏性特征的SLAM2、稠密SLAM和半稠密SLAM3、语义SLAM4、基于深度学习的SLAM
2024/11/13 18:25:29 23.44MB 计算机视觉 SLAM
1
深度学习不断增长的能源耗费和性能成本,促使社区通过选择性修剪组件来减少神经网络的规模。
与生物学上的相似之处是,稀疏网络即使不能比原来的密集网络更好,也能得到同样好的推广。
2024/11/12 22:47:52 4.36MB 稀疏性 深度学习
1
深度学习一书中文版,英语不好的可以看中文版的,很好的一个资源
2024/11/10 20:25:57 38.09MB deeplearning
1
Sciblog支持信息和代码此仓库包含支持我的博客的项目,其他信息和代码:。
您可以找到我在发表的所有帖子的列表。
笔记本项目:在这个项目中,我们解释什么是卷积以及如何使用带有MNIST字符识别数据集的MXNet深度学习库来计算CNN。
这里是。
:在本项目中,我们使用PyTorch解释迁移学习的基本方法(微调和冻结),并分析在哪种情况下更好地使用每种方法。
这里是。
:在这些笔记本中,我们展示了如何使用Char-CNN和VDCNN模型执行字符级卷积以进行情感分析。
这里是。
:在本笔记本中,我们展示了许多简单的技术来生成图像,文本和时间序列中的新数据。
这里是。
降:在本项目中,我们使用sklearn和CUDA展示t-SNE算法的示例。
我们使用CNN从图像生成高维特征,然后展示如何将其投影并可视化为二维空间。
这里是。
:在本笔记本中,我们使用GPU上的LightGBM(也可在CPU上)设计实时欺诈检测模型。
然后使用Flask和websockets通过API对模型进行操作。
这里是。
:在本笔记本中,我们演示如何创建图像分类API。
该系统与使用CNTK深度
1
AttentionModel在ImageCaption、MachineTranslation、SpeechRecognition等领域上有着不错的结果。
那么什么是AttentionModel呢?举个例子,给下面这张图片加字幕(ImageCaption):一只黄色的小猫带着一个鹿角帽子趴在沙发上。
可以发现在翻译的过程中我们的注意力由小猫到鹿角帽子再到沙发(小猫→鹿角帽子→沙发)。
其实在很多和时序有关的事情上,人类的注意力都不是一成不变的,随着事情(时间)发展,我们的注意力不断改变。
2024/11/4 19:46:38 2.77MB attention 深度学习
1
主要用于图像中目标检测,快速标注出目标的具体位置吗,方便使用者训练测试,减轻了人工标注的精力!
23.14MB 深度学习
1
有深度学习中必读经典,以及相应的matlab代码。
此外,文章中本人做的笔记,希望能帮助大家更好的理解。
文章为:1.Afastlearningalgorithmfordeepbeliefnets(Hinton)2.LearningDeepArchitecturesforAI(Bengio)3.APracticalGuidetoTrainingRestrictedBoltzmannMachines(Hinton)等。

code为经典的deeplearningtool(matlab版),有DBN,NN,CNN,etc。
2024/10/27 20:22:57 31.2MB 深度学习 经典文章 matlab 笔记
1
最经典的VGG代码,是深度学习的基础,适合配合VGG代码一起阅读使用,非常适合深度学习初学者阅读学习深度学习框架构建规则。
2024/10/27 11:55:19 45KB VGG 深度学习
1
共 597 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡