一、设计目标设计目的:设计一个含有36条指令的MIPS单周期处理器,并能将指令准确的执行并烧写到试验箱上来验证设计初衷1、理解MIPS指令结构,理解MIPS指令集中常用指令的功能和编码,学会对这些指令进行归纳分类。
2、了解熟悉MIPS体系中的处理器结构3、熟悉并掌握单周期处理器CPU的原理和设计4、进一步加强Verilog语言进行电路设计的能力二、实验设备1、装有xilinxISE的计算机一台2、LS-CPU-EXB-002教学系统实验箱一台三、实验任务1.、学习MIPS指令集,深入理解常用指令的功能和编码,并进行归纳确定处理器各部件的控制码,比如使用何种ALU运算,是否写寄存器堆等。
2、单周期CPU是指一条指令的所有操作在一个时钟周期内执行完。
设计中所有寄存器和存储器都是异步读同步写的,即读出数据不需要时钟控制,但写入数据需时钟控制。
故单周期CPU的运作即:在一个时钟周期内,根据PC值从指令ROM中读出相应的指令,将指令译码后从寄存器堆中读出需要的操作数,送往ALU模块,ALU模块运算得到结果。
如果是store指令,则ALU运算结果为数据存储的地址,就向数据RAM发出写请求,在下一个时钟上升沿真正写入到数据存储器。
如果是load指令,则ALU运算结果为数据存储的地址,根据该值从数据存RAM中读出数据,送往寄存器堆根据目的寄存器发出写请求,在下一个时钟上升沿真正写入到寄存器堆中。
如果非load/store操作,若有写寄存器堆的操作,则直接将ALU运算结果送往寄存器堆根据目的寄存器发出写请求,在下一个时钟上升沿真正写入到寄存器堆中。
如果是分支跳转指令,则是需要将结果写入到pc寄存器中的。
2024/7/22 14:06:56 2.55MB 计算机组成原 龙芯中科
1
LZW就是通过建立一个字符串表,用较短的代码来表示较长的字符串来实现压缩. LZW编码是基于1977年开发的LZ77算法为基础的。
LZ77编码算法的核心是查找从前向缓冲存储器开始的最长的匹配串。
LZW压缩算法的基本原理:提取原始文本文件数据中的不同字符,基于这些字符创建一个编译表,然后用编译表中的字符的索引来替代原始文本文件数据中的相应字符,减少原始数据大小。
看起来和调色板图象的实现原理差不多,但是应该注意到的是,我们这里的编译表不是事先创建好的,而是根据原始文件数据动态创建的,解码时还要从已编码的数据中还原出原来的编译表
2024/7/21 8:35:58 2KB LZW编码
1
操作系统原理的课件,包括进程管理、存储器管理、设备管理、文件管理等
2024/7/18 5:24:47 6.22MB 操作系统原理
1
本人在计算机四级嵌入式备考过程中积累的有关《计算机组成与接口》第二章存储器的知识,里面涵盖了绝大部分考察的知识,逻辑清晰,下载编辑需要用xmind文件打开。
2024/7/7 4:56:38 2.88MB 计算机四级
1
微机原理课程大作业,大家可以参考。
由多个v文件组成,包括了ALU、控制器、存储器、各种寄存器、多路选择器、符号扩展器、流水线、冒险、前传都有。
并且各文件的接口很清晰。
1
只读存储器和闪速存储器考试复习
2024/7/3 13:44:03 7.79MB 计算机网络
1
本书适用于那些想要写出更快、更可靠程序的程序员。
通过掌握程序是如何映射到系统上,以及程序是如何执行的,读者能够更好的理解程序的行为为什么是这样的,以及效率低下是如何造成的。
粗略来看,计算机系统包括处理器和存储器硬件、编译器、操作系统和网络互连环境。
而通过程序员的视角,读者可以清晰地明白学习计算机系统的内部工作原理会对他们今后作为计算机科学研究者和工程师的工作有进一步的帮助。
它还有助于为进一步学习计算机体系结构、操作系统、编译器和网络互连做好准备
2024/7/2 8:05:40 20.53MB linux 计算机系统
1
使用logisim完成的运算器,存储器,数据表示,cache,cpu等多个实验
2024/6/28 9:22:33 895KB logisim 组成原理
1
操作系统课设,包括进程管理与通信,存储器管理,设备管理,文件管理,还有课设题目要求,很齐全。
有课设报告,各个程序源代码,我们的课设题目,已经验收,还行。
放上来供大家分享
2024/6/18 21:07:15 2.34MB 进程 管理 通信
1
AMBA®3AHB-Lite协议,中文版。
AMBAAHB-Lite是面向高性能的可综合设计,提供了一个总线接口来支持Master并提供高操作带宽。
最普通的AHB-Lite从器件是内存器件,外部存储器接口和高带宽外围器件。
虽然低带宽外围器件可以连接到AHB-Lite,但从系统性能考虑,应当连接到APB总线上,可以通过APB桥接实现。
2024/6/18 19:14:47 750KB 总线 ahb
1
共 255 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡