思科首席工程师介绍全球流量预测,SR用途,SR原理,应用场景,思科SR处理方案,segmentRouting是如何转发的?
2023/2/5 7:09:27 4.79MB 思科 SR原理
1
随机森林randomforest模型是由Breiman和Cutler在2001年提出的一种基于分类树的算法它通过对大量分类树的汇总提高了模型的预测精度是取代神经网络等传统机器学习方法的新的模型随机森林的运算速度很快在处理大数据时表现优良随机森林不需要顾虑一般回归分析面临的多元共线性的问题不用做变量选择现有的随机森林软件包给出了所有变量的重要性另外随机森林便于计算变量的非线性作用而且可以体现变量间的交互作用interaction它对离群值也不敏感本文通过3个案例分别介绍了随机森林在昆虫种类的判别分析有无数据的分析取代逻辑斯蒂回归和回归分析上的应用案例的数据格式和R语言代码可为研究随机森林在分类与回归分析中的应用提供参考">随机森林randomforest模型是由Breiman和Cutler在2001年提出的一种基于分类树的算法它通过对大量分类树的汇总提高了模型的预测精度是取代神经网络等传统机器学习方法的新的模型随机森林的运算速度很快在处理大数[更多]
2023/2/3 14:01:57 1.86MB 随机森林模型
1
多输出支持向量回归对于一般的回归问题,给定训练样本D={(x1,y1),(x2,y2),...,(xn,yn)},yi€R,我们希望学习到一个f(x)使得其与y尽可能的接近,w,b是待确定的参数。
在这个模型中,只要当f(x)与y完全相同时,损失才为零,而支持向量回归假设我们能容忍的f(x)与y之间最多有ε的偏差,当且仅当f(x)与y的差别绝对值大于ε时,才计算损失,此时相当于以f(x)为中心,构建一个宽度为2ε的间隔带,若训练样本落入此间隔带,则认为是被预测正确的。
(间隔带两侧的松弛程度可有所不同)------
2023/1/27 12:33:31 5KB Matlab
1
在Jupyter笔记本中编写和共享计算分析的十个简单规则该存储库是对及其预印本浏览以下示例笔记本,了解十个简单规则的应用。
此外,我们还建立了以众包更多技术和深入的教程,并紧跟快速发展的Jupyter生态系统。
我们鼓励您贡献并分享您的专业知识。
例子1本示例演示了使用机器学习方法预测蛋白质折叠分类的可重现的4步工作流程。
规则9:设计笔记本以供阅读,运行和浏览。
下面的nbviewer链接提供笔记本电脑和笔记本电脑的非交互式预览。
按钮使用Binder()服务器在Web浏览器中启动JupyterNotebook或JupyterLab(可能很慢!)。
(请参阅Binder网站如何设置到Git存储库的链接。
)HTML链接提供了笔记本的永久静态记录。
也可以从0-Workflow.ipynb顶级笔记本中的链接直接启动所有笔记本。
NbviewerJupyter笔记本Jupyter实验室HTML规则8:共享和解释您的数据。
为了实现可反复性,我们提供了example1/data目录,其中包含运行工作流程所需的所有数据。
该数据与下载位置和下载日期
1
本书共分为三部分。
第一部分讲预测基础,次要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路;
第二部分讲预测算法;
第三部分讲预测案例。
2023/1/18 10:46:12 79.57MB R语言 统计 预测
1
为了提高犯罪预测的精确性,从而提高犯罪预防技术、以便更好地保护社会治安.采用模糊BP神经网络的一种新算法,通过对已有年份的犯罪数量进行分析,建立知识库,预测犯罪数量.试验数据结果显示:预测具有一定的精确性;同时采用聚类算法得到的隐层数和节点数也是十分精确的,增加了知识库运用的广泛性.该方法为犯罪的预测分析提供了一种新思路.
2023/1/16 2:12:29 291KB 犯罪 算法 知识库 模糊
1
房价问题预测数学模型(西工大2011建模处理方案)
2023/1/15 3:37:22 4.37MB 房价问题 数学建模 西工大 2011
1
唯一的一份在windows上进行Siamese网络训练和预测的指导协助你少走弯路
2023/1/13 6:05:08 182KB Siamese; 深度学习
1
基于之前一版的扩展版,统计了贷款总利息,对比官网的数据分析,自在还款的误差率在0.01元。
本计算器最大的优势在于可以提前计算预测当前还款额全部还款记录,以便于合理配置最低还款额,官网只能看到已还款记录,无法查询未还款记录。
1
几种灰色预测序列:简单的gm11verhust(gm(2,1))推陈出新gm11残差gm11
2016/3/15 9:24:15 4KB 灰色预测 gm11 verhust 新陈代谢
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡