javasocket服务器源码Protobuf套接字RPC进口自描述Google的协议缓冲区库使编写rpc服务变得容易,但它不包含rpc实现。
传输细节由用户来实现。
这是一个简单的基于tcp/ip套接字的基于java和python的rpc实现,适用于想要简单实现其protobufrpc服务的人。
看:下载/安装Java你可以在downloads/protobuf-socket-rpc-2.0.jar找到用Java1.6编译的jar,或者你也可以下载源码直接使用。
您还需求在类路径中使用googleprotobuf库(版本2.4.0)。
你可以从PythonPythonegg位于下载/protobuf.socketrpc-1.3.2-py2.6.egg或者从python目录签出源代码。
释放请加入以获取新版本的通知。
邮件列表有问题或想为这个项目做出贡献?请在讨论组留言,Java用法以下示例显示了使用com.googlecode.protobuf.socketrpcJavaAPI的服务器和客户端
2019/4/14 15:32:45 218KB 系统开源
1
RFC1094网络文件系统协议(RFC1094NFS:NetworkFileSystemProtocolSpecification)本备忘录状态ThismemoprovidesinformationfortheInternetcommunity.ItdoesnotspecifyanInternetstandardofanykind.Distributionofthismemoisunlimited.版权声明Copyright(C)TheInternetSociety(1999).AllRightsReserved.摘要:网络文件系统可以使访问远程机上的目录和文件象在本地机上一样方便。
本文就是引见网络文件系统协议规范的中文版。
目录1.简介21.1远程过程调用21.2外部数据描述21.3无状态服务器32.NFS协议定义32.1文件系统模型32.2服务器过程42.3基本数据类型123.NFS实现中的问题183.1服务器/客户端的关系183.2路径名解析183.3许可问题193.4RPC信息193.4XDR结构的尺寸203.6设置RPC的参数20附录A安装协议定义21A.1.简介21A.2RPC信息21A.3XDR结构的尺寸21A.4基本数据类型22A.5.服务器过程23作者地址25
2016/4/20 17:54:22 178KB RFC1094 NFS 网络文件系统 协议说明书
1
ApacheStorm(apache-storm-2.3.0-src.zip源码)是一个免费的开源分布式实时计算系统。
ApacheStorm可以轻松可靠地处理无限制的数据流,实时处理就像Hadoop进行批处理一样。
ApacheStorm很简单,可以与任何编程语言一起使用,而且使用起来非常有趣!ApacheStorm有很多用例:实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。
ApacheStorm速度很快:基准测试显示每个节点每秒处理超过一百万个元组。
它具有可扩展性、容错性,保证您的数据将得四处理,并且易于设置和操作。
ApacheStorm与您已经使用的队列和数据库技术集成。
ApacheStorm拓扑使用数据流并以任意复杂的方式处理这些流,根据需要在计算的每个阶段之间对流进行重新分区。
在教程中阅读更多内容。
2016/11/13 21:51:24 55.72MB ApacheStorm Storm apache-storm
1
ApacheStorm(apache-storm-2.3.0-src.tar.gz源码)是一个免费的开源分布式实时计算系统。
ApacheStorm可以轻松可靠地处理无限制的数据流,实时处理就像Hadoop进行批处理一样。
ApacheStorm很简单,可以与任何编程语言一起使用,而且使用起来非常有趣!ApacheStorm有很多用例:实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。
ApacheStorm速度很快:基准测试显示每个节点每秒处理超过一百万个元组。
它具有可扩展性、容错性,保证您的数据将得四处理,并且易于设置和操作。
ApacheStorm与您已经使用的队列和数据库技术集成。
ApacheStorm拓扑使用数据流并以任意复杂的方式处理这些流,根据需要在计算的每个阶段之间对流进行重新分区。
在教程中阅读更多内容。
2016/7/9 10:52:24 41.11MB ApacheStorm Storm apache-storm
1
ApacheStorm(apache-storm-2.3.0.zip)是一个免费的开源分布式实时计算系统。
ApacheStorm可以轻松可靠地处理无限制的数据流,实时处理就像Hadoop进行批处理一样。
ApacheStorm很简单,可以与任何编程语言一起使用,而且使用起来非常有趣!ApacheStorm有很多用例:实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。
ApacheStorm速度很快:基准测试显示每个节点每秒处理超过一百万个元组。
它具有可扩展性、容错性,保证您的数据将得四处理,并且易于设置和操作。
ApacheStorm与您已经使用的队列和数据库技术集成。
ApacheStorm拓扑使用数据流并以任意复杂的方式处理这些流,根据需要在计算的每个阶段之间对流进行重新分区。
在教程中阅读更多内容。
2020/8/2 23:26:50 305.04MB ApacheStorm apache-storm Storm
1
ApacheStorm(apache-storm-2.3.0.tar.gz)是一个免费的开源分布式实时计算系统。
ApacheStorm可以轻松可靠地处理无限制的数据流,实时处理就像Hadoop进行批处理一样。
ApacheStorm很简单,可以与任何编程语言一起使用,而且使用起来非常有趣!ApacheStorm有很多用例:实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。
ApacheStorm速度很快:基准测试显示每个节点每秒处理超过一百万个元组。
它具有可扩展性、容错性,保证您的数据将得四处理,并且易于设置和操作。
ApacheStorm与您已经使用的队列和数据库技术集成。
ApacheStorm拓扑使用数据流并以任意复杂的方式处理这些流,根据需要在计算的每个阶段之间对流进行重新分区。
在教程中阅读更多内容。
2018/5/9 13:52:10 304.62MB ApacheStorm apache-storm Storm
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡