opencv3.1用SVM实现MNIST,可读取自己的图片,用Windows画板黑底白字,保存在测试项目路径下即可识别手写字
2025/5/5 13:11:05 28.76MB OPENCV SVM MNIST
1
opencv图像处理机器视觉不可多得的,用python语言开发的书,作者爱尔兰乔.米尼奇诺。
覆盖深度估计与分割,人脸识别。
图像检索。
目标识别跟踪、神经网络等方面。
2025/5/4 11:13:57 23.95MB opencv python 图像处理 机器视觉
1
说话人确认属于说话人识别(Speakerrecognition)中的一个子任务。
根据任务目标不同,说话人识别可以分为说话人确认(SpeakerVerification)和说话人辨认(SpeakerIdentification)两大类。
说话人确认是判断某段语音是否为指定的说话人所说(YesorNo),是一对一的判别问题;而说话人确认则是对于众多候选说话人集合,给定一段语音,确定该段语音是候选人集合中的哪一个人所说,是多对一问题。
对于说话人辨认来说,随着候选说话人集合不断扩大,任务复杂度增大,识别的性能会下降,而说话人确认技术则只需在给定阈值下判断Yes或者No,其性能并不受人数影响。
2025/5/4 11:25:14 220KB 语音识别
1
通过拍摄的魔方照片识别每个块的颜色并展示出来,手动调节hsv阈值处理,可以通过鼠标点击图像获取hsv值,可以手动更改阈值条件,通过draw函数把不符合面积阈值的轮廓去掉,欢迎讨论https://download.csdn.net/download/qq_32107283/10950602之前这个程序有点小问题就不用看了博客原文在这:https://blog.csdn.net/qq_32107283/article/details/86774583
2025/5/4 7:24:35 2KB python opencv
1
详细介绍了一种实际应用的集装箱号识别系统中的图像及字符的处理和分割过程。
在Matlab中实现定位后的图像处理及字符分割,达到了很好的分割效果,应用神经网络相关的BP算法,可以显著提高模式识别率。
图像、字母和数字分割准确率达到98%。
1
本文基于传统的LPC倒谱特征和KC复杂性特征建立了一个说话人确认系统,采用了YOHOspeakerverifiea:ion数据库,Enroll阶段:采用238说话人4个session每个Sessi。
n有10个语音样本数据,Verify阶段:采用138说话人10个Session每个session有4个语音样本数据,训练模板和测试该说话人确认系统,取得了较好的说话人确认效果。
2025/5/3 18:07:09 3.12MB LCP
1
MATLAB基于神经网络的英文字母识别
2025/5/3 1:44:09 33KB matlab
1
该课题为基于颜色的MATLAB设计。
根据RGB不同分量,可以定位不同颜色,再结合形态学知识,可以精准去除干扰区域,如去除大于某阈值或者小于某阈值的面积,实现精准定位和计数。
可以应用改造于路锥识别,交通标志,红绿灯,安全帽,不同颜色的餐盘等课题中,触类旁通,举一反三,是一个很好地课题。
带有GUI可视化界面。
2025/5/2 18:14:09 951KB MATLAB颜色识别 MATLAB颜色检测
1
基于视觉注意力模型的大规模高分辨率遥感影像的矿区识别
2025/5/2 9:55:12 1.81MB 研究论文
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡