高阶谱在滚动轴承毛病诊断中的应用
2019/2/18 17:01:12 1.07MB 研究论文
1
滚动轴承的振动信号特征分析讲述,数字信号处理,实验讲述
2019/10/25 5:16:19 133KB 数字信号处理
1
基于稀疏成分分析的欠定盲源分离技术在风力发电机齿轮箱轴承毛病特征提取中的应用
2020/5/2 9:07:11 626KB 研究论文
1
文档学习写字机安装还在学习中1、产品概览AX4写字机框架采用2020工业铝型材,配合5MM亚克力面板,XY轴导向采用8mm直径光轴配合直线轴承运动,上下抬笔机构采用微型直线导轨系统。
本套件XY轴行程297×210mm,标配42步进电机,SG90舵机,建议运行速度一分钟3000mm。
本套件采用开源Arduino系统,配合相关软件可在纸质材料上写字画图等。
本套件含包装分量3KG左右,纸箱外形尺寸57×21×6cm。
本套件为USB接口,连接电脑才能工作,建议WIN7系统。
2、零部件明细(1)机器框架8mm光杆450mm2条、360mm2条2020欧标铝型材421mm1条、68mm4条LM8UU直线轴承8个亚克力25片F624法兰轴承10个同步轮2个同步带1.5米3D笔架1个扎带25条电线固定带2条直线导轨组件1套(2)电器控制42步进电机2个Arduino控制器1套SG90舵机1个电源1个USB线1条(3)螺丝清单M2×6十字螺丝=4滑台M2×10十字螺丝=2舵机M2×16十字螺丝=2直线导轨M3×8十字螺丝=8步进电机M3×12十字螺丝=8亚克力固定M3×20十字螺丝=17光轴固定+限位M3×30十字螺丝=4电路板固定M4×12十字螺丝=8光轴紧定M4×30十字螺丝=1后滑轮M4×25手拧螺丝=1笔架M4×40十字螺丝=4十字滑轮M5×10十字螺丝=8亚克力与铝型材M6×12十字螺丝=6铝型材M2六角螺母=4M3六角螺母=29M4六角螺母=5M4方块螺母=9M5铝型材螺母=8φ3×20塑料隔离柱=4φ4×2塑料隔离柱=2φ4×7塑料隔离柱=8φ3×20塑料隔离柱=4(激光头配套)M3×30十字螺丝=4(激光头配套)3、机架组装(1)组装十字滑台
2017/4/12 4:02:10 8.19MB 学习文档
1
《CNH-M磁力泵碳化硅轴承的改进》由于金属材料和碳化硅的比重相差较大,要考虑轴套过大会添加电机负荷,可适当将轴套外径改小,轴承内径减小。
H8/f7,H7/n6
1
《高速部分流泵滑动轴承毛病分析与诊断》应用两个振动调制的数学原理,在准确计算轴承元件固有频率和激起固有振动的滑动轴承振动频率的基础上,利用普通的频谱分析仪,从细化的谱图上识别这两种振动的频率,从而完成sundyne高速部分流泵滑动轴承毛病诊断。
1
•精准的位置控制依照输入脉冲的数量,确定轴转动的角度。
位置误差非常小(小于1/10度),且不累积。
•精确的转速步进电机的转速取决于输入电脉冲的频率,可以实现精确控制和方便调节。
因而被广泛地应用于各种运动控制领域。
•正向/反向转动,急停及锁定功能在整个速度范围内都可以实现对电机力矩和位置的有效控制,包括静力矩。
在电机锁定状态下(电机绕组中存在电流,而外部没有旋转的脉冲指令输入),仍然保持一定的力矩输出。
•低转速条件下的精准位置控制步进电机不需要借助齿轮箱的调节,就可以在非常低的转速下平稳运行,同时输出较大的力矩,避免了功率的损耗和角度位置偏差,同时降低了成本,节省了空间。
•更长的使用寿命步进电机的无电刷设计保证了电机的使用寿命很长。
步进电机的寿命通常取决于轴承。
2022/9/7 20:56:13 3.08MB 手册
1
为满足滑油系统零部件衰退早期症兆监测要求,采用自制的全流量在线磨粒静电传感器对润滑条件下轴承钢滑动摩擦副开展实时在线磨损形态监测研究.研究了润滑条件下金属磨粒荷电机理和设计了静电监测系统,开展了不同载荷和滑动速度时的磨损实验,对摩擦系数、静电感应信号、静电信号均方根值(RMS)进行相关性分析.研究结果显示:①全流量在线磨粒静电监测方法与摩擦系数均能监测到粘着的发生,具有一致性;②静电监测方法在粘着发生前监测到异常;③在稳定磨损阶段,摩擦系数随载荷的增大而减小,随滑动速度的升高而降低;④在剧烈磨损阶段,静电信号中脉冲尖峰的RMS值随载荷增加时先增加后减小,随滑动速度的升高而减小.
1
《多级离心泵滚动轴承烧毁原因分析》对卧式多级离心泵所安装的圆锥滚子轴承烧毁原因进行了综合分析,指出因平衡管阻力损失过大,使平衡鼓不能正常工作,导致轴承负荷过大是轴承烧毁的主要原因。
多级泵滚子轴承毛病分析轴承间隙检查
1
目录1前言12研究内容23传动方案的分析与拟定24电动机的选择25传动装置的运动及动力参数的选择和计算25.1传动装备的总效率为25.2传动比的分配25.3传动装置的运动和动力参数计算25.3.1各轴的转速计算:25.3.2各轴的输入功率计算:35.3.3各轴输入转矩的计算:36齿轮的计算36.1第一对斜齿轮的计算36.1.1材料选择36.1.2初选齿轮齿数36.1.3按齿面接触强度设计36.1.4按齿根弯曲疲劳强度设计56.1.5几何尺寸计算76.1.6齿轮的尺寸计算76.1.7传动验算86.2第二对斜齿轮的计算86.2.1材料选择86.2.2初选齿数86.2.3按齿面接触强度设计96.2.4按齿根弯曲疲劳强度设计106.2.5几何尺寸计算126.3按标准修正齿轮126.3.1修正中心距126.3.2对第二对齿轮修正螺旋角:136.3.3第二对齿轮的分度圆和中心距:136.3.4计算齿宽:136.3.5齿轮的尺寸计算136.3.6传动验算147轴的设计157.1高速轴的设计157.1.1初步确定轴的最小直径:157.1.2根据轴向定位要求确定轴各段的直径和长度157.2中速轴的设计167.2.1初步确定轴的最小直径:177.2.2初步选择滚动轴承177.2.4轴承端盖187.2.5键的选择187.3低速轴的计算187.3.1初步确定轴的最小直径187.3.2根据轴向定位要求确定轴各段的直径和长度198轴的校核198.1高速轴的校核208.1.1各支点间的距离208.1.2求轴上的载荷:208.2中速轴的校核218.2.1各支点间的距离228.2.2求轴上的载荷:228.3低速轴的校核248.3.1各轴段的距离248.3.2求轴上的载荷:249轴承的寿命计算269.1高速轴上轴承的寿命计算269.1.1求两轴承遭到的径向载荷和269.1.2求两轴承的轴向力和279.1.3求轴承当量重载荷P1和P2279.2中速轴上轴承的寿命计算279.2.1求两轴承的轴向力和289.2.2求轴承当量重载荷P1和P2289.3低速轴上轴承的寿命计算289.3.1求两轴承遭到的径向载荷和289.3.2求两轴承的轴向力和299.3.3求轴承当量重载荷P1和P22910键的校核3010.1高速轴上和联轴器相配处的键:3010.2中速轴上和齿轮相配处的键:3010.3低速轴上和齿轮相配处的键:3011主副齿轮的设计3111.1第一对主副齿轮的设计3111.2第二对主副齿轮的设计3212减速器箱体的设计3312.1箱盖各钢板的尺寸:3412.1.1箱盖左侧钢板的尺寸如图:3412.1.2箱盖轴承座的尺寸如图:3412.1.3箱盖吊耳环下钢板尺寸3412.1.4吊耳环的尺寸3512.1.5高速上肋板的尺寸3512.1.6中速轴上的肋板的尺寸3512.1.7视孔盖的尺寸3612.1.9箱盖顶钢板的尺寸3712.1.10箱盖凸缘钢板尺寸3712.1.11箱盖前后侧面的尺寸3812.2箱座上各钢板的尺寸3812.2.1箱座底座的尺寸3812.2.2箱座左侧面的尺寸3912.2.3轴承座的尺寸3912.2.4吊钩的尺寸3912.2.5箱座凸缘的尺寸3912.2.6低速端肋板钢板尺寸4012.2.7高速轴端肋板的尺寸4012.2.8中速端肋板的尺寸4112.2.9箱座右侧面钢板的尺寸4112.2.10箱座前后端面的尺寸4212.2.11箱座底板4213结束语42
2019/3/8 21:17:23 624KB cad图 论文
1
共 83 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡