是机械工业部电工专业指导技术文件,是内部材料。
虽然编写得有点老,但是东西还是很有用的,很少能找到这样全,透侧的计算东东
2018/10/11 6:09:22 8.94MB 电动机 电磁计算 马达
1
程序名称:飞思卡尔智能车舵机调试工具v1.1程序作者:LinX时间:2009-03-07联系方式:QQ:408111919Email:linhaiwz@163.com"&vbCrLf&vbCrLf&_〖 本程序为方便舵机调试而编写,错误在所难免,如有建议欢迎和我联系!〗角度转换为高电平时间角度-45045(anger/度)高电平时间100015002000(t/us)计算公式为:T=1000+(anger+45)*(1000/90)该程序可以通过串口与单片机进行通讯,实时改变舵机的角度。
通讯协议为:0xfe0xMM0xNN(其中0xfe为包头,0xMM为PWMDTYx高8位,0xN为PWMDTYx低8位)在串口中缀中分三次接收,在第二次接收时保存数据到temp0中,在第三次接收到数据时将PWMDTY01=((unsignedint)temp0<<8)|RxData就可以完成PWM改变输出了。
下位机程序如下:#include/*commondefinesandmacros*/#include/*derivativeinformation*/#pragmaLINK_INFODERIVATIVE"mc9s12xs128"unsignedcharRX=0,temp0;voiduart_putchar(unsignedcharch){if(ch=='\n'){while(!(SCI0SR1&0x80));SCI0DRL=0x0d;return;}while(!(SCI0SR1&0x80));SCI0DRL=ch;}staticvoidPWM_Init(void){//SB,Bforch2367//SA,Aforch0145PWMCTL_CON01=1; //0和1联合成16位PWM;
PWMCAE_CAE1=0; //选择输出模式为左对齐输出模式PWMCNT01=0; //计数器清零;
PWMPOL_PPOL1=1; //先输出高电平,计数到DTY时,反转电平PWMPRCLK=0X40;//clockA不分频,clockA=busclock=16MHz;CLKB16分频:1MhzPWMSCLA=8;//对clockSA进行2*8=16分频;
pwmclock=clockA/16=1MHz;PWMCLK_PCLK1=1;//选择clockSA做时钟源PWMPER01=20000;//周期20ms;
50Hz;(可以使用的范围:50-200hz)PWMDTY01=1500;//高电平时间为1.5ms;PWME_PWME1=1;}voidsetbusclock(void)//PLLsetting{CLKSEL=0X00;//disengagePLLtosystemPLLCTL_PLLON=1;//turnonPLLSYNR=1;REFDV=1;//pllclock=2*osc*(1+SYNR)/(1+REFDV)=32MHz;_asm(nop);//BUSCLOCK=16M_asm(nop);while(!(CRGFLG_LOCK==1));//whenpllissteady,thenuseit;CLKSEL_PLLSEL=1;//engagePLLtosystem;}staticvoidSCI_Init(void)//SCI{SCI0CR1=0x00;SCI0CR2=0x2c;//enableReceiveFullInterrupt,RXenab
2017/9/26 2:39:53 273KB 飞思卡尔 智能车 舵机 调试工具
1
机械视觉镜头选型计算公式机械视觉镜头选型计算公式
2019/8/21 11:20:28 36KB 机器视觉镜头
1
引见推挽式变压器计算公式,引见推挽式变压器计算公式,引见推挽式变压器计算公式
2015/8/20 8:43:49 31KB 推挽式
1
神经网络灵敏度分析对网络结构设计、硬件实现等具有重要的指点意义,已有的灵敏度计算公式对权值和输入扰动有一定限制或者计算误差较大。
基于Piché的随机模型,通过使用两个逼近函数对神经网络一类Sigmoid激活函数进行高精度逼近,获得了新的神经网络灵敏度计算公式,公式取消了对权值扰动和输入扰动的限制,与其他方法相比提高了计算精度,实验证明了公式的正确性和精确性。
2022/9/17 15:43:31 965KB 论文研究
1
用来比较两个图像进行去噪后的效果,有psnr和mse,很有用的一个计算公式,希望对大家有所协助
2021/4/7 1:38:48 997B MATLAB psnr
1
设计并研究了一种采用激光打标机在塑料光纤(POF)表面雕刻散射点的侧面均匀发光光纤,可用作自由立体显示器的定向背光光源。
通过建立激光打标凹形散射点的POF均匀发光模型,推导了POF均匀发光的散射点坐标计算公式。
针对设计的凹形散射点参数,用SolidWorks软件构建侧面发光光纤模型,用TracePro软件进行光线追迹仿真。
结果表明,散射点长度半圆心角(用于表征凹形散射点的深度和横向长度)的微小变化对发光亮度均匀度影响较大,而凹形散射点轴向宽度的微小变化对POF侧面发光均匀度影响很小。
对各参数进行设计优化后,得到POF半径R=0.25mm,凹形散射点宽度d=0.15mm,散射点长度半圆心角θ=15°,POF长度L=600mm,TracePro软件仿真得到POF侧面发光亮度均匀度为87.5%。
根据设计优化后的参数采用激光打标机进行激光雕刻POF表面散射点,得到单根POF的侧面发光亮度均匀度为80.90%。
将100根侧面发光POF紧密排布成面光源,得到面光源发光亮度均匀度为88.91%。
实验结果表明所提出的设计方法和制造的POF面光源能满足自由立体显示器指向性背光源设计的要求。
2015/4/21 13:42:10 10.97MB 激光技术 侧面发光 激光打标 发光均匀
1
常用股票目标计算公式及简单应用,包含kdj,macd,obv,rsi,psy,brar,cr,bias,cr,bias,cci,wr,trix等各类常见的股票目标计算和简单计算例子
2021/9/10 13:32:31 254KB 股票公式 金融 指标
1
【国外电子与通信教材系列】宽带无线数字通信【ISBN】7-5053-7667-5【出版发行项】北京-电子工业出版社【出版日期】2002.9【格式】超星转成的pdf【页数】411页【作者简介】AndreasF.Molisch,奥地利的维也纳理工大学通信与射频工程学院移动通信系的副教授,合编著有《宽带无线数字通信》等。
【本书简介】本书将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
深入的引见。
本书的主要特点是:将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
本书除了引见基础知识和基本原理以外,还引见了最新的学术前沿及技术进展。
这是一本很好的教科书和技术参考书,适用于电子与通信类专业的高年级本科生、研究生及研究所和企业的工程技术人员。
【目录】第一部分宽带系统引论第1章基础知识1.1什么是宽带系统1.2发展历史参考文献第2章当前及未来的宽带系统2.1DECT和PHS2.2GSM/DCS-19002.3IS-1362.4IS-952.5W-CDMA2.6HIPERLAN-II参考文献第3章无线移动信道3.1平衰落信道3.2时间色散信道:直观描述3.3时间色散信道:系统理论描述3.3.1确定性解释3.3.2随机性解释3.4广义平稳非相关散射WSSUS假设3.4.1广义平稳WSS3.4.2非相关散射3.4.3广义平稳非相关散射WSSUS3.4.4WSSUS系统函数的一些特例3.5表达时间色散信道的参数3.5.1延迟扩展和相关带宽3.5.2延迟窗口和干扰比3.5.3总结3.6时间色散信道模型3.6.1抽头延时线模型3.6.2COST207模型3.6.3Hashemi-Suzuki-Turin模型3.7含有角度色散的模型参考文献第4章概述第5章展望5.1各种方法的比较5.2未来的发展5.2.1自适应天线5.2.2多输入-多输出系统5.2.3多用户检测参考文献第二部分非均衡系统第6章为什么要研究非均衡系统参考文献第7章系统模型7.1发射机7.1.1相移键控7.1.2频移键控7.2信道7.3接收机7.3.1相干和非相干解调7.3.2PSK和CPFSK的差分检测7.3.3GPFSK的鉴频器检测7.4同信道干扰的处理参考文献第8章固定抽样的计算方法8.1一般考虑8.1.1符号序列的平均8.1.2经典接收机的分析8.1.3接收信号的相关特性8.2蒙特卡洛MC模拟方法8.2.1计算概述8.2.2文献评论8.3高斯变量二次型QFGV方法8.3.1有关公式8.3.2文献评论8.4高斯矢量问角度ABGV方法8.5相关矩阵特征值方法8.6群延迟方法8.6.1文献评论8.7差错域方法8.8等效信道模型方法8.9其他方法:文献评论参考文献第9章固定抽样的结果9.1调制.信道和接收机的影响9.2CPFSK9.2.1文献评论9.3FSK9.4相干检测PSK9.5差分检测PSK9.5.1文献评论参考文献第10章降低差错平台的调制方式和接收机结构10.1部分比特检测10.2非线性鉴频器10.3降低差错平台的调制方式参考文献第11章自适应抽样11.1盲自适应抽样11.2具有训练序列的自适应抽样11.3具有训练序列的同步参考文献第12章天线分集12.1天线分集的分类12.2高斯变量二次型QFGV方法12.2.1文献评论12.3差错域方法12.4阴影信道中的分集12.5采用固定抽样的分集结果12.6采用自适应抽样的分集结果参考文献第13章综述与结论参考文献附录A采用固定抽样的比特差错宰计算公式A.1高斯变量二次型QFGV方法的解A.2高斯矢量间角度ABGV方法的解A.3差错域方法的解参考文献附录B第二部分的字母表第三
1
【国外电子与通信教材系列】宽带无线数字通信【ISBN】7-5053-7667-5【出版发行项】北京-电子工业出版社【出版日期】2002.9【格式】超星转成的pdf【页数】411页【作者简介】AndreasF.Molisch,奥地利的维也纳理工大学通信与射频工程学院移动通信系的副教授,合编著有《宽带无线数字通信》等。
【本书简介】本书将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
深入的引见。
本书的主要特点是:将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
本书除了引见基础知识和基本原理以外,还引见了最新的学术前沿及技术进展。
这是一本很好的教科书和技术参考书,适用于电子与通信类专业的高年级本科生、研究生及研究所和企业的工程技术人员。
【目录】第一部分宽带系统引论第1章基础知识1.1什么是宽带系统1.2发展历史参考文献第2章当前及未来的宽带系统2.1DECT和PHS2.2GSM/DCS-19002.3IS-1362.4IS-952.5W-CDMA2.6HIPERLAN-II参考文献第3章无线移动信道3.1平衰落信道3.2时间色散信道:直观描述3.3时间色散信道:系统理论描述3.3.1确定性解释3.3.2随机性解释3.4广义平稳非相关散射WSSUS假设3.4.1广义平稳WSS3.4.2非相关散射3.4.3广义平稳非相关散射WSSUS3.4.4WSSUS系统函数的一些特例3.5表达时间色散信道的参数3.5.1延迟扩展和相关带宽3.5.2延迟窗口和干扰比3.5.3总结3.6时间色散信道模型3.6.1抽头延时线模型3.6.2COST207模型3.6.3Hashemi-Suzuki-Turin模型3.7含有角度色散的模型参考文献第4章概述第5章展望5.1各种方法的比较5.2未来的发展5.2.1自适应天线5.2.2多输入-多输出系统5.2.3多用户检测参考文献第二部分非均衡系统第6章为什么要研究非均衡系统参考文献第7章系统模型7.1发射机7.1.1相移键控7.1.2频移键控7.2信道7.3接收机7.3.1相干和非相干解调7.3.2PSK和CPFSK的差分检测7.3.3GPFSK的鉴频器检测7.4同信道干扰的处理参考文献第8章固定抽样的计算方法8.1一般考虑8.1.1符号序列的平均8.1.2经典接收机的分析8.1.3接收信号的相关特性8.2蒙特卡洛MC模拟方法8.2.1计算概述8.2.2文献评论8.3高斯变量二次型QFGV方法8.3.1有关公式8.3.2文献评论8.4高斯矢量问角度ABGV方法8.5相关矩阵特征值方法8.6群延迟方法8.6.1文献评论8.7差错域方法8.8等效信道模型方法8.9其他方法:文献评论参考文献第9章固定抽样的结果9.1调制.信道和接收机的影响9.2CPFSK9.2.1文献评论9.3FSK9.4相干检测PSK9.5差分检测PSK9.5.1文献评论参考文献第10章降低差错平台的调制方式和接收机结构10.1部分比特检测10.2非线性鉴频器10.3降低差错平台的调制方式参考文献第11章自适应抽样11.1盲自适应抽样11.2具有训练序列的自适应抽样11.3具有训练序列的同步参考文献第12章天线分集12.1天线分集的分类12.2高斯变量二次型QFGV方法12.2.1文献评论12.3差错域方法12.4阴影信道中的分集12.5采用固定抽样的分集结果12.6采用自适应抽样的分集结果参考文献第13章综述与结论参考文献附录A采用固定抽样的比特差错宰计算公式A.1高斯变量二次型QFGV方法的解A.2高斯矢量间角度ABGV方法的解A.3差错域方法的解参考文献附录B第二部分的字母表第三
1
共 84 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡