基于量子神经网络的道路交通事故预测,孙棣华,付青松,道路交通事故预测是道路交通安全研究的一项重要内容。
针对BP神经网络在道路交通事故预测中精度不足及收敛速度慢的问题,提出基于�
2025/3/19 18:39:44 773KB 道路交通事故
1
搭配Matlab2015b版本的神经网络工具箱用户手册,内容详实,是重要的参考资料
2025/3/19 6:08:42 3.81MB Matlab 神经网络 手册 2015b
1
本书详细讲解了常用数字图像处理技术的基本方法,如点运算、几何变换、边缘检测等。
详细介绍VisualC++数字图像编程。
通过大量的综合性实例,向读者展示了如何开发一套完整的数字图像处理应用程序。
  包含数字图像处理的基本技术和典型应用,然后介绍了9个综合性的商业案例,分别是相机自动调焦系统、计算机集成数控技术、细胞识别统计系统、人脸检测系统、车牌定位系统、基于神经网络的文字识别系统、牌照自动识别监控系统、运动检测系统、运动人体跟踪系统等,提供了相应的源代码文件个人认为很好的一本书,代码也很全。
1
Houston 2013数据集是一个结合了高光谱成像(HSI)与激光雷达(LiDAR)技术的数据集,主要用于遥感与地理信息系统研究领域。
该数据集针对地理信息的精确分析,包含了丰富的空间维度信息和光谱维度信息,使得它在地表覆盖分类、城市环境监测、农业遥感等多个领域具有重要的研究价值。


具体来说,高光谱成像技术能够在连续的光谱波段范围内获取地物的光谱信息,HSI数据集因而包含了成千上万的光谱波段,能够反映出地物在不同波长下的反射特性。
这些信息对于识别和分类不同的地物类型,如植被、水体、人造地物等具有重要意义。


另一方面,激光雷达技术通过发射激光脉冲并测量反射回来的信号来获得地表的高精度三维结构信息。
LiDAR数据集通常包括地物的高度信息、形状细节以及地表粗糙度等特征,这些信息对于地形分析、建筑物建模以及树木高度测量等方面至关重要。


Houston 2013数据集将HSI与LiDAR数据集分别划分为测试集和训练集,这样的划分可以用于开发和评估地表分类和遥感影像解译算法。
在遥感影像解译中,测试集用于验证算法的准确性,而训练集则用于训练分类器或机器学习模型,使得模型能够学习如何区分不同的地物类别。


该数据集的文件名称列表揭示了数据集的结构,其中HSI_TeSet.mat和HSI_TrSet.mat分别代表了高光谱成像数据集的测试集和训练集,LiDAR_TeSet.mat和LiDAR_TrSet.mat分别代表了激光雷达数据集的测试集和训练集。
TeLabel.mat和TrLabel.mat则可能包含了对应测试集和训练集的标签信息,即每一块地物的具体类别标签。


在处理这些数据集时,研究者需要熟悉遥感影像分析的常用工具和方法,例如使用ENVI、ArcGIS、ERDAS Imagine等软件对HSI数据进行预处理和分析,以及使用Terrascan、LIDAR360等软件对LiDAR数据进行点云处理。
除此之外,深度学习方法,特别是卷积神经网络(CNN)在处理HSI数据中也显示出强大的能力,它可以自动提取和学习光谱特征,对于提高分类精度具有显著效果。


Houston 2013数据集通过提供两种不同的遥感技术所获得的综合数据集,为遥感领域的研究者提供了一个宝贵的实验平台,使得他们可以在此基础上开发和测试新的地表分类算法和模型,进而推动遥感技术在环境监测与分析中的应用与发展。
2025/3/18 14:41:47 13.69MB 数据集 LIDAR数据
1
完整的遗传算法GA优化BP神经网络的代码,带数据,简单易懂,可修改
2025/3/18 12:09:03 52KB 遗传算法 BP神经网络 预测
1
认知神经科学].M.S.Gazzaniga.扫描版,经典神经网络图书。
大师杰作。
2025/3/16 0:32:31 19.46MB 神经科学
1
利用GA-BP神经网络算法的应用实例之MATLAB程序,有很详细的中文注释,大家可以根据实际的数据修改相应的参数!
1
基于LVI的原始对偶神经网络的MATLABSimulink建模和仿真,用于求解线性和二次程序
2025/3/11 0:07:30 1.04MB 研究论文
1
使用神经网络进行预测,有BF,FF,GRNN,RBF网络等,使用神经网络进行预测(MATLAB版)NeuralNetworkspredict
2025/3/10 7:22:24 5KB 神经网络 预测 MATLAB
1
极限学习机(ExtremeLearningMachine)ELM,是由黄广斌提出来的求解单隐层神经网络的算法。
ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。
2025/3/10 3:06:58 64KB ELM 极限学习机 MATLAB程序
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡