用遗传算法对RBF网络的权值进行了优化,并与未进行优化的RBF网络进行了对比分析,结果表明经过优化的rbf网络逼近能力要好于未优化的网络
2023/8/30 23:49:43 7KB 遗传算法 RBF网络
1
采用粒子群算法优化bp神经网络的权值和阈值,实现神经网络学习性能的提升
2023/8/11 12:23:33 2KB 粒子群
1
均值漂移算法meanshiftTrack一、实验内容完成基于MeanShift的目标跟踪算法,红框标出目标区域实现实时追踪。
二、算法原理1.在当前帧,计算候选目标的特征2.计算候选目标与初始目标的相似度3.计算权值4.利用MeanShift算法,计算目标新位置在这里插入图片描述5.若新目标中心需位于原目标中心附近,则停止,否则转步骤2三、思路流程截取跟踪目标矩阵rect;
求取跟踪目标的加权直方图hist1;
读取视频序列中的一帧,先随机取一块与rect等大的矩形,计算加权直方图hist2;
计算两者比重函数,如果后者差距过大,更新新的矩阵中心Y,进行迭代(MeanShift是一种变步长可以迅速接近概率密度峰值的方法),直至一定条件(移动步长平方和大于0.5或超过20次迭代)后停止。
2023/8/2 9:24:56 187.81MB DIA 数字图像分析 均值漂移 目标跟踪
1
第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
本文件功能:用BP神经网络预测温湿度。
本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。
其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。
本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。
本次仿真存在不足:1.未修改学习率、附加动量等参量没有解决BP网络收敛慢的问题。
2.没有使用全局优化的算法,没有解决BP容易陷入极值点的问题。
这种用BP网络来进行预测的模型网上有很多,但是大多数都是预测风力发电等,可能也是因为该BP模型是40年代所提出,我是没有找到有温湿度的预测,该代码纯属自己改写的,并且运行无误,现在分享出来,让大家节省一些时间去研究更有深度的算法。
2023/8/2 9:25:48 2.28MB BP神经网络  温湿度预测
1
BP神经网络的权值采用梯度下降法更新,不仅输出的精度不高,而且耗费时间较长,基于遗传算法来更新可以达到更好的效果,该程序可以直接运行,没有错误
2023/7/21 20:30:24 52KB BP GA
1
#include#includetypedefintInfoType;#defineMAXV100/*最大顶点个数*//*以下定义邻接矩阵类型*/typedefstruct{intno;/*顶点编号*/InfoTypeinfo;/*顶点其他信息*/}VertexType;/*顶点类型*/typedefstruct/*图的定义*/{intedges[MAXV][MAXV];/*邻接矩阵*/intvexnum,arcnum;/*顶点数,弧数*/VertexTypevexs[MAXV];/*存放顶点信息*/}MGraph;/*图的邻接矩阵类型*//*以下定义邻接表类型*/typedefstructANode/*弧的结点结构类型*/{intadjvex;/*该弧的终点位置*/structANode*nextarc;/*指向下一条弧的指针*/InfoTypeinfo;/*该弧的相关信息,这里用于存放权值*/}ArcNode;
1
1、了解最优滤波器的理论与应用,能够利用最优信号处理的方法,根据采样数据进行分析,设计出合理的最优滤波器;
2、熟悉消除工频干扰信号的处理方法,掌握基本的干扰抑制模型;
3、能够根据最小均方滤波器和维纳滤波器原理设计和计算出最优滤波器的权值向量;
4、探究设计出的滤波器受到的主要影响因素的干扰
2023/7/1 21:31:47 341KB 最优滤波器 ECG信号 工频干扰
1
1、城市间的距离网采用的邻接矩阵表示,邻接矩阵的存储结构定义采用课本中给出的定义,若两个城市之间不存在道路,则将相应边的权值设为自己定义的无穷大值。
要求在屏幕上显示得到的最小生成树中包括了哪些城市间的道路,并显示得到的最小生成树的代价。
2、表示城市间距离网的邻接矩阵(要求至少6个城市,10条边)3、最小生成树中包括的边及其权值,并显示得到的最小生成树的代价。
2023/6/7 8:01:29 84KB 最小生成树
1
遗传优化神经网络权值和阈值,是本人的课程设计
2023/6/6 15:54:57 892KB 遗传 神经网络
1
共 133 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡