2018/2019/校招/春招/秋招/自然语言处理(NLP)/深度学习(DeepLearning)/机器学习(MachineLearning)/C/C/Python/面试笔记
2025/4/7 16:47:39 46.23MB Python开发-学习教程
1
计算语言学是一门涉及语言学、计算机科学和数学等多门学科的交叉学科,覆盖面广。
刘颖编著的这本《计算语言学(修订版)》侧重最经典的工作,阐述计算语言学的基本理论和方法,主要介绍现代句法理论和语义理论,词法、句法和语义阶段重要的分析算法、统计语言学和机器翻译。
本书结构完整,层次分明,条理清楚;
既便于教学,又便于自学。
可作为中文、外语、计算机等专业高年级本科生和研究生教材,也可供从事自然语言处理或信息处理的研究者参考。
2025/4/5 10:44:08 2.75MB 计算语言学 自然语言处理
1
编译原理大作业,C语言小子集编译程序-递归下降分析。
本上机实习是为C语言(子集)设计一个编译程序,完成词法分析、语法分析、语义分析等功能,并生成某种机器上的目标代码(汇编语言)或中间代码(四元式)。
2025/4/4 20:01:02 4KB 编译原理
1
在现代的企业环境中,单机容量往往无法存储大量数据,需要跨机器存储。
统一管理分布在集群上的文件系统称为分布式文件系统。
而一旦在系统中,引入网络,就不可避免地引入了所有网络编程的复杂性,例如挑战之一是如果保证在节点不可用的时候数据不丢失。
传统的网络文件系统(NFS)虽然也称为分布式文件系统,但是其存在一些限制。
由于NFS中,文件是存储在单机上,因此无法提供可靠性保证,当很多客户端同时访问NFSServer时,很容易造成服务器压力,造成性能瓶颈。
另外如果要对NFS中的文件中进行操作,需要首先同步到本地,这些修改在同步到服务端之前,其他客户端是不可见的。
某种程度上,NFS不是一种典型的分布式系统,虽然
1
基于机器学习的停车场车位状态识别方法及系统
2025/4/3 21:56:03 488KB 机器学习
1
本资源为自己人工标记的微博语料,分为消极pos.txt,积极neg.txt各60000条,适用于机器学习情感分析,训练数据原数据
1
包含ppt讲解与代码。
这是我的博客,包含数据挖掘,机器学习,基本算法等内容http://www.cnblogs.com/Dzhouqi/
1
手写数字图片1000张,由minist转化来的JPG格式,机器学习,深度学习都可以使用
2025/3/31 20:19:41 4.03MB jpg minist
1
公开整理的“分区表数据集(2024-2025年)”是一份涵盖特定时间段内的详细分区数据资料。
这份数据集可能包含了不同区域、不同类型的分区信息,比如城市的行政区划、商业区划分,或者是根据特定标准(如人口、经济活动等)划分的区域数据。
该数据集的来源、规模、详细程度以及其数据字段的丰富性都将为相关研究或分析提供宝贵的信息。
由于数据集的范围是2024年至2025年,这意味着数据集将包含对未来区域规划、发展动态、以及可能的政策变化的预测和规划数据。
因此,它对于规划师、政策制定者、市场分析师、地产开发商等利益相关者都具有极高的价值。
通过这份数据集,他们能够洞察未来的趋势,从而作出更为明智的决策。
样例数据的链接提供了一个访问点,可以进一步了解数据集的具体内容和结构。
通过访问提供的链接,用户可以查看分区表数据集的具体格式、数据字段、以及数据的详细样例。
这有助于用户对数据集有一个直观的认识,并评估这份数据是否满足他们的需求。
由于这份数据集被标记为“数据集”,这意味着它是一份结构化或半结构化的数据集合,用于分析、统计、或机器学习等目的。
它可能包括各类区域的统计数据、地理信息系统(GIS)数据、面积、人口统计信息、以及可能的经济指标等。
此类型的数据集通常需要通过专门的数据分析工具或软件进行处理和分析,以便从中提取有用的信息。
在处理这类数据集时,需要考虑数据的完整性、准确性以及时效性。
完整性确保数据覆盖了所有相关的分区和字段,准确性则保证数据的每一个条目都是正确无误的,时效性保证数据反映了最新的区域信息。
此外,用户也需要关注数据的隐私和安全性问题,尤其是在处理可能涉及敏感信息的分区数据时。
这份数据集的提供者可能是政府机关、研究机构或私营公司。
他们可能出于研究目的、政策制定、市场分析等不同的动机进行了数据的搜集和整理工作。
无论来源如何,这份数据集都可能经过了严格的筛选和清洗过程,以确保数据的质量和可用性。
对于准备使用这份数据集的用户来说,理解数据集的背景、目的、以及如何解读数据集中的信息是非常关键的。
这通常需要具备一定的专业知识,比如地理学、统计学、数据科学等领域的知识,来确保分析结果的科学性和准确性。
公开整理的“分区表数据集(2024-2025年)”是一份包含未来期间区域划分详细信息的数据集合,它为各种应用场景提供了宝贵的数据支持。
通过理解其结构和内容,用户可以深入挖掘数据背后的潜在价值,为决策提供坚实的数据基础。
这份数据集对于需要进行区域分析的研究者和决策者来说,无疑是一份重要的资源。
2025/3/31 20:19:02 1.8MB 数据集
1
非常有戏的机器学习课程设计《基于朴素贝叶斯方法的fMRI数据分析》。
压缩包内附有课程设计原文,word版本。
同时,附有实验用全部程序,由数十个matlab函数组成。
所以,也是学习matlab和朴素贝叶斯的好资料!数据集相信可以从网站下载,也可以向本人索要。
2025/3/31 2:06:16 122KB 机器学习 课程设计 贝叶斯 fMRI
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡