1、前端技术JS框架:jquery-2.1.1、Bootstrap.js、JQueryUICSS框架:Bootstrapv3.3.4(稳定是后台,UI方面根据需求自己升级改造吧)。
客户端验证:jQueryValidationPlugin1.9.0。
在线编辑器:ckeditor、simditor上传文件:Uploadifyv3.2.1动态页签:Jerichotab(自己改造)数据表格:jqGrid、BootstrapTalbe对话框:layer-v2.3下拉选择框:jQuerySelect2树结构控件:jQueryzTree、jQuerywdtree页面布局:jquery.layout.js1.4.4图表插件:echarts、highcharts日期控件:My97DatePicker2、后端技术核心框架:ASP.NETMVC5、WEBAPI持久层框架:EntityFramework6.0定时计划任务:Quartz.Net组件安全支持:过滤器、Sql注入、请求伪造服务端验证:实体模型验证、自己封装Validator缓存框架:微软自带Cache、Redis日志管理:Log4net、登录日志、操作日志工具类:NPOI、Newtonsoft.Json、验证码、丰富公共类似
2024/9/1 19:39:23 48.79MB EntityFramew Bootstrap ASP.NET MVC5
1
储能模型,运行的很好,可以借鉴,分享给大家,希望大家共同学习matlab
2024/9/1 17:49:09 16KB matlab
1
在IT行业中,二次开发是指基于现有软件产品进行的定制化改造和功能扩展,以满足特定用户或场景的需求。
本主题聚焦于"RADIOSS"软件的材料二次开发,这是一个涉及计算流体动力学(CFD)和结构力学的高级仿真工具。
RADIOSS,全称“ResponseofDIscreteObejctstoSHock”,是由Altair公司提供的一个非线性有限元分析(FEA)解决方案,广泛应用于汽车、航空、航天、机械等工程领域。
材料二次开发在RADIOSS中扮演着至关重要的角色。
它涉及到对软件中原有的材料模型进行改进或者新增自定义材料模型,以更好地模拟真实世界中的各种复杂材料行为。
例如,对于金属材料,可能需要考虑塑性变形、蠕变、疲劳等特性;
对于复合材料,可能需要处理层合结构、纤维方向依赖性等问题。
1.**材料模型的分类**:RADIOSS支持多种材料模型,包括线性弹性、塑性、粘塑性、弹塑性、超弹性、蠕变、损伤、疲劳等。
二次开发可能涉及增强这些模型,或者引入新的模型来适应特定应用。
2.**材料参数定义**:在二次开发中,需要精确定义材料参数,如弹性模量、泊松比、屈服应力、硬化参数等,这通常需要参考实验数据或材料供应商提供的信息。
3.**自定义材料模型**:有时候,标准材料模型无法满足特定工程问题的需求,这时就需要编写自定义材料子程序,利用RADIOSS的用户子程序接口(如umat或pumat)实现。
这些子程序需要考虑材料的力学行为,如应变率依赖性、温度依赖性等。
4.**材料库的扩展**:通过二次开发,可以构建自己的材料数据库,方便在不同项目中复用,提高分析效率。
同时,这也有助于保持材料参数的一致性和准确性。
5.**编程技能**:进行RADIOSS的材料二次开发,通常需要掌握Fortran或C++语言,因为这是RADIOSS用户子程序接口所支持的语言。
此外,理解有限元方法和材料力学也是必要的。
6.**验证与校核**:开发新的材料模型后,必须通过与实验数据的对比或与其他成熟软件的结果比较来进行验证,确保其准确性和可靠性。
7.**应用实例**:在汽车碰撞模拟、航空航天结构耐久性分析、压力容器的安全评估等领域,材料二次开发可以帮助工程师更准确地预测结构响应,从而优化设计,降低成本。
RADIOSS的材料二次开发是一个技术含量高、实践性强的工作,它结合了理论力学、材料科学和编程技能,旨在提供更贴近实际的仿真结果。
对于希望提升仿真精度和效率的工程师来说,这是一个值得深入研究的领域。
通过阅读"二次开发_RADIOSS-材料二次开发.pdf"这份资料,可以系统学习和掌握相关知识。
2024/9/1 16:59:41 326KB
1
《ANSYS_LS_DYNA模拟鸟撞飞机风挡的动态响应》鸟撞问题在飞机设计中至关重要,尤其是在飞机起飞和降落时,高速运动的飞机与鸟类相撞可能导致严重损伤,甚至造成机毁人亡的灾难。
特别是飞机的前风挡部分,由于迎风面积大,成为鸟撞概率较高的区域,而风挡玻璃的强度相对较低,因此对风挡受鸟撞冲击的模拟分析显得尤为必要,以提升飞行安全性。
早期的抗鸟撞设计主要依赖实验方法,但随着计算机技术和有限元数值计算理论的发展,现在越来越多地采用数值计算来分析鸟撞问题。
目前的有限元模型主要分为解耦解法和耦合解法。
解耦解法将鸟撞冲击力作为已知条件,单独求解风挡的动态响应,但鸟撞载荷模型的不确定性会影响求解精度。
耦合解法则考虑碰撞接触,通过协调鸟体与风挡接触部位的条件,联合求解,能更直观地模拟整个鸟撞过程。
本文采用ANSYS_LS_DYNA软件,建立鸟撞风挡的三维模型,研究鸟撞风挡的动态响应特征。
在建立有限元模型时,使用ANSYS软件,简化了计算过程,忽略了对风挡动态响应影响不大的结构因素,如机身、后弧框和铆钉等,将其替换为边界固定。
风挡结构为圆弧形,材料为特定型号的国产航空玻璃,鸟撞击点设在风挡中部,撞击角度为29°。
选用LS-DYNA材料库中的塑性动力学材料模型,破坏准则设定为最大塑性应变失效模式,当材料塑性应变达到5%时材料破坏。
鸟体的模拟是鸟撞分析的一大挑战,由于真实鸟体的本构特性难以准确描述,通常采取弹性体、弹塑性体或理想流体等简化模型。
本文中,鸟体被简化为质量1.8kg、直径14cm的圆柱体,材料选用弹性流体模型。
计算结果显示,当鸟撞速度达到540km/h(相对于风挡的绝对速度)时,风挡的后弧框处有效塑性应变达到5%,风挡破坏。
据此,计算得出风挡的安全临界速度为150m/s。
在这一速度下,风挡后弧框处首先发生破坏,成为结构弱点。
撞击时的最大应力主要集中在后弧框及其下方,而非撞击点。
此外,鸟撞还会导致风挡结构产生位移。
风挡下方通常布置有精密仪器,因此必须考虑鸟撞引起的位移情况。
鸟体撞击后在风挡上滑行,挤压风挡表面,产生较大位移。
计算表明,在150m/s的撞击速度下,最大位移可达38mm,位于撞击点和后弧框之间。
风挡表面位移随着时间呈现出先向下位移,然后因弯曲波反弹而振荡的行为。
总结来说,鸟撞风挡的最危险区域位于后弧框及其下方。
不同结构的风挡有不同的鸟撞安全临界速度、最大位移和撞击时间。
对于本文的风挡模型,临界速度为450km/h,最大位移为38mm,撞击时间约为7ms。
这些分析结果对于飞机设计改进和飞行安全性的提升具有重要指导意义。
2024/9/1 16:57:18 218KB dyna
1
星际空间StarSpace是一种通用的神经模型,用于有效学习实体嵌入以解决各种问题:学习单词,句子或文档级别的嵌入。
信息检索:对实体/文档或对象集的排名,例如对Web文档的排名。
文本分类或任何其他标记任务。
度量/相似度学习,例如学习句子或文档相似度。
基于内容或基于协作过滤的推荐,例如推荐音乐或视频。
嵌入图,例如多关系图,例如Freebase。
图像分类,排名或检索(例如,通过使用现有的ResNet功能)。
在一般情况下,它学会将不同类型的对象表示为一个通用的矢量嵌入空间,因此,名称中的星形('*',通配符)和空间会相互比较。
在给定查询实体/文档或对象的情况下,它学习对一组实体/文档或对象进行排名,该查询不一定与该集中的项目具有相同的类型。
有关其工作原理的更多详细信息,请参见。
消息StarSpace在Python中可用:请查看“部分以获取详细信息。
2024/9/1 13:34:34 420KB C++
1
以高阶统计量数学分析方法,对混舍高斯模型进行研究,并给出理论计算结果。
重点讨论二元混合高斯模型,给出高阶统计量的理论值,用Matlab仿真不同方差和不同均值时多膜性、对称性和斜度值、峰度值的估计结果,并比较斜度值、峰度值的理论结果和仿真结果,验证理论结果的正确性,为通信理论中混合高斯模型的研究做补充。
关键词:混合高斯模型;
高阶统计量;
二元混合高斯模型;
峰度值;
斜度值
1
转速、电流双闭环直流调速系统和调节器的工程设计方法,双闭环直流调速系统的数学模型和动态性能。
2024/9/1 3:32:31 6.48MB 电力拖动自动控制
1
风电场风速预测的RBF神经网络模型,介绍了风电场风速预测的方法,建立了RBF神经网络模型,提前1h预测,并把结果与BP方法进行对比
2024/8/31 14:46:32 217KB 风速 预测
1
基于PSIM仿真软件的,断续模式的PFC模型;
给出了全电压范围内(85~265)内的PI参数,纹波小,功率因数高
2024/8/31 10:52:15 22KB PFC 断续模式
1
工资管理系统毕业论文与源码:目录摘要IABSTRACTII第一章 引言11.1项目开发背景11.2国内外研究现状11.3课题研究的意义21.4系统研究方法2第二章开发环境及实现的技术32.1asp技术简介32.2IIS简介32.3SQL简介42.4ADO访问数据库4第三章系统分析63.1可行性分析63.1.1技术可行性63.1.2经济可行性63.1.3操作可行性73.2需求分析73.2.1系统功能需求83.2.2职工需求描述83.2.3管理员需求描述9第四章总体设计104.1系统设计目标104.2系统功能结构104.3数据字典114.4数据流图124.5E-R模型134.5数据库设计15第五章详细设计及编码185.1系统登陆模块的设计185.2系统主页面的设计195.3员工信息管理模块的设计205.4工资计算模块的设计205.5科室信息模块设计22第六章系统测试236.1系统测试方法236.2测试过程236.3测试结果246.4系统的特点246.5系统的缺点25结束语26参考文献27致谢28
2024/8/31 9:44:14 933KB 毕业论文
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡