这是一个恒流输出的开关电源,仿真软件为PSIM,通过给定参考电压来控制输出电流,文档内附控制(占空比)到输出(电感平均电流)的传递函数。
电感电流的平均值就是输出负载电流。
ILavg=Iout
2024/11/6 2:14:25 17KB 恒流电源 开关电源
1
采用链表,根据ER随机图模型建立随机图,并计算它的平均度以及平均聚集度
2024/11/5 10:31:25 2KB ER 模拟
1
本文对中国中短期、长期的人口作了预测。
第一,首先,作为已知的条件(输入)的统计数据都是离散的,如某某年各个年龄的女性生育率、死亡率、性别比等;
第二,作为结果输出人们希望得到的数据也是离散的,例如:2010年、2020年、2050年…的人口总数、各个人口总数、人口的年龄分布等;
第三,与其用数值的方法求解连续模型,不如直接建立离散模型,也就是所谓的双线型模型,本文就是利用双线型模型解决了问题。
通过Matlab进行编程求解,我们得到未来中短期和长期的市区,城镇,乡村的各项人口指标及其各自的发展趋势。
若控制总和生育率不超过1.8,则中国总人口将在2015到2020年达到最大值,约为14.5亿,之后开始下降,在2050年将低于12亿。
中国人口平均年龄和老龄化指数均随时间持续增长,意味着劳动力负担将加重。
且城市的平均年龄和老龄化指数均高于城镇和乡村,意味着城市的生活水平和医疗水平相对于镇,乡较高。
最后我们对该双线型模型进行了评价,并给出了控制人口增长的一些建议。
1
实验研究了芯径为600μm的全石英光纤传输脉宽为5ns,波长为1064nm的高峰值功率脉冲激光的传输特性。
采用N-ON-1测试方法,获得光纤损伤阈值和光纤传能特性曲线。
光纤50%概率损伤阈值为24mJ,平均输出激光能量达到14mJ,峰值功率接近3MW。
可将光纤传能特性曲线分为3个过程:未损伤段(平稳传输段)、光纤端面等离子体击穿段(非平稳传输段)和光纤体损伤段(传输截止段)。
分析了光纤损伤形貌和损伤机理。
研究表明,同时提高光纤端面等离子体击穿阈值和光纤初始输入段损伤阈值是提高光纤传能容量的关键。
1
山梨酸钾是一种常用防腐剂,应用非常广泛,但食用过量会严重危害人体健康。
研究了山梨酸钾在水溶液和橙汁中的荧光特性,山梨酸钾水溶液荧光特征峰为λex/λem=375nm/485nm,山梨酸钾和橙汁的混合溶液除了存在此荧光特征峰,还有一个侧峰λex/λem=470nm/540nm。
在混合溶液中,橙汁和山梨酸钾的荧光特性相互干扰,加大了山梨酸钾浓度检测的难度。
为准确测定混合溶液中山梨酸钾的浓度,采用微粒群算法优化的误差逆向传播(PSO-BP)神经网络对其进行检测。
3组预测样本的平均回收率为98.97%,PSO-BP神经网络能够精确测定混合溶液中山梨酸钾的质量浓度范围为0.1~2.0g/L。
预测结果表明荧光光谱法和PSO-BP神经网络相结合的方法能有效地检测山梨酸钾在橙汁中的浓度。
2024/10/25 21:48:04 4.37MB 光谱学 荧光光谱 微粒群算 浓度检测
1
B站UP主的主要收益来源(播放量获取的奖励、用户充电、广告等等)首先做up主最直接的就是做视频,当你的粉丝过1000或者视频总播放超过10万时可以申请创造激励,申请创造激励之后,你的原创视频播放会给你带来收益,平均1000播放3元左右,根据你视频的质量上下浮动,如果你的视频被顶上首页那很自然的你的视频你会获得大量的流量,当然视频的点赞投币都会影响视频被顶上首页的概率。
pythonselenium模块selenium模块是一个用于Web应用程序测试的工具。
Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。
支持的浏览器包括IE(7,8,9,10,11),,Safa
2024/10/21 7:36:42 133KB le ni niu
1
2017年电工杯优化问题一等奖,含论文和算例,针对微电网日前优化调度问题,本文以matlab数据处理为基础,建立非线性规划模型,运用贪心算法对问题1到问题6进行了解答。
对于问题1根据成本、功率、单价、时段之间的关系,以及发电与负荷相等的原则,得到无可再生能源和可再生能源全额利用时负荷的供电构成,及无可再生能源时全天总供电费用1976.41元,平均购电单价0.5976元/kWh,可再生能源时全额利用全天总供电费用2275.17元,平均购电单价0.6654元/kWh。
2024/10/20 14:06:29 1.21MB 电工
1
ACD/ChemSketch是高级化学发展有限公司(ACD)设计的用于化学画图用软件包,该软件包可单独使用或与其他软件共同使用。
该软件可用于画化学结构、反应和图形。
也可用于设计与化学相关的报告和演讲材料。
ACD/ChemSketch有如下主要功能:结构模式:用于画化学结构和计算它们的性质。
画图模式:用于文本和图象处理分子性质模式:对以下性质进行估算:*分子量*百分组成*摩尔折射率,*摩尔体积*等张比容*折射率*表面张力*密度*介电常数*极性*单一同位素质量,标称分子量和平均分子质量ACD/ChemSketch可以作为画图软件包单独使用,也可作为其他ACD软件的终端使用,如NMR预测软件。
2024/10/19 13:27:21 38.99MB 化学
1
本框架提供了有关粒子群算法(PSO)和遗传算法(GA)的完整实现,以及一套关于改进、应用、测试、结果输出的完整框架。
本框架对粒子群算法与遗传算法进行逻辑解耦,对其中的改进点予以封装,进行模块化,使用者可以采取自己对该模块的改进替换默认实现组成新的改进算法与已有算法进行对比试验。
试验结果基于Excel文件输出,并可通过设定不同的迭代结束方式选择试验数据的输出方式,包括:1.输出随迭代次数变化的平均达优率数据(设定终止条件区间大于0)。
2.输出随迭代次数变化的平均最优值数据(设定终止条件区间等于0)。
本框架了包含了常用基准函数的实现以及遗传算法与粒子群算法对其的求解方案实现和对比,如TSP,01背包,Banana函数,Griewank函数等。
并提供大量工具方法,如KMeans,随机序列生成与无效序列修补方法等等。
对遗传算法的二进制编码,整数编码,实数编码,整数序列编码(用于求解TSP等),粒子群算法的各种拓扑结构,以及两种算法的参数各种更新方式均有实现,并提供接口供使用者实现新的改进方式并整合入框架进行试验。
其中还包括对PSO进行离散化的支持接口,和自己的设计一种离散PSO方法及其用以求解01背包问题的实现样例。
欢迎参考并提出宝贵意见,特别欢迎愿意协同更新修补代码的朋友(邮箱starffly@foxmail.com)。
代码已作为lakeast项目托管在GoogleCode:http://code.google.com/p/lakeasthttp://code.google.com/p/lakeast/downloads/list某些类的功能说明:org.lakest.common中:BoundaryType定义了一个枚举,表示变量超出约束范围时为恢复到约束范围所采用的处理方式,分别是NONE(不处理),WRAP(加减若干整数个区间长度),BOUNCE(超出部分向区间内部折叠),STICK(取超出方向的最大限定值)。
Constraint定义了一个代表变量约束范围的类。
Functions定义了一系列基准函数的具体实现以供其他类统一调用。
InitializeException定义了一个代表程序初始化出现错误的异常类。
Randoms类的各个静态方法用以产生各种类型的随机数以及随机序列的快速产生。
Range类的实现了用以判断变量是否超出约束范围以及将超出约束范围的变量根据一定原则修补到约束范围的方法。
ToStringBuffer是一个将数组转换为其字符串表示的类。
org.lakeast.ga.skeleton中:AbstractChromosome定义了染色体的公共方法。
AbstractDomain是定义问题域有关的计算与参数的抽象类。
AbstractFactorGenerator定义产生交叉概率和变异概率的共同方法。
BinaryChromosome是采用二进制编码的染色体的具体实现类。
ConstantFactorGenerator是一个把交叉概率和变异概率定义为常量的参数产生器。
ConstraintSet用于在计算过程中保存和获取应用问题的各个维度的约束。
Domain是遗传算法求解中所有问题域必须实现的接口。
EncodingType是一个表明染色体编码类型的枚举,包括BINARY(二进制),REAL(实数),INTEGER(整型)。
Factor是交叉概率和变异概率的封装。
IFactorGenerator参数产生器的公共接口。
Population定义了染色体种群的行为,包括种群的迭代,轮盘赌选择和交叉以及最优个体的保存。
org.lakeast.ga.chromosome中:BinaryChromosome二进制编码染色体实现。
IntegerChromosome整数编码染色体实现。
RealChromosome实数编码染色体实现。
SequenceIntegerChromosome整数序列染色体实现。
org.lakeast.pso.skeleton中:AbstractDomain提供一个接口,将粒子的位置向量解释到离散空间,同时不干扰粒子的更新方式。
AbstractF
2024/10/11 21:51:28 1.42MB 遗传算法 粒子群算法 GA PSO
1
频域特征值包括频域内的中值频率,平均能量,平均功率等
2024/10/4 2:46:21 675B 频域特征值
1
共 570 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡