电子设计自动化(electronicdesignautomation,EDA)是指利用计算机辅助设计(CAD)软件,来完成超大规模集成电路(VLSI)芯片的功能设计、综合、验证、物理设计(包括规划、布线、版图、设计规则检查等)等流程的设计方式。
2019/3/24 5:55:01 3.48MB 自动化ML
1
电子路单功能如下:  1、能显示澳门常用的大路,珠仔路,小路,大眼仔,葱由路(采用标准澳门规则画法)  2、具有庄、闲、和、对子统计显示功能  3、可以对以上所有功能进行修正并自动刷新  4、特别提供下一轮问路功能  5、每条路满了可以自动后移  6、所有操作步骤都有详细提示
2020/2/15 8:29:56 298KB 电子路单
1
对于视频的排名方式目前众说纷纭,有的人说根据关键词的密度排名的,也有的说是根据点击量排名的,有的说根据评论排名的,也有的说是根据视频的质量排名的,更有人说是根据时间排名的。
实际上大家说的都是对的,百度搜索引擎在排名视频的时候确实能够看出来遵照了这些,但是我想要说的是最主要的还是“时间”。
2018/2/4 18:09:15 517KB 搜索引擎优化 seo 百度
1
编程实现一个4维的立方体网络仿真,网络节点按照如下方式运行,实验要求:1.网络节点按照默认的顺序,如节点标识0,1,…,15从小到大的顺序依次产生一个数据包。
2.节点产生(或接收到)一个数据包后,随机选择一个相邻节点发送数据包,依此规则重复执行,直至产生数据包的节点接收到自己的数据包后,直接删除该数据包。
超级立方体网络指具有d个维度的网络具有2d个网络节点,网络节点按照0,1,2,…2d-1顺序进行编号。
标识i的节点采用二进制方式可表示为d位的二进制序列,网络任意两个节点二进制方式表示的d位标识符,对应位只有某一位不同时,表示节点是直接相邻接,否则,两个节点之间不存在直接相邻接。
例如,对于一个3维的超级立方体网络,网络中存在8(8=23)个网络节点,如0(000),1(001),2(010),3(011),4(100),5(101),6(110),7(111)。
网络拓扑结构按照如下方式连接,节点0(000)与节点1(001),2(010),4(100)直接相临接,因节点0(000)与节点1,2,4分别在第1位,第2位,第3位不同(从左往右数),其他节点按此规律相邻接。
2019/7/20 11:18:26 598KB omnet++ 实验
1
PyQt5图像和特效,里面涉及到QSS相关的规则与如何使用,来创建外观效果好的pyqt窗口界面,可以自定义控件的显示效果
2020/10/10 3:05:56 3.19MB PyQt5 图形和特效 源码 素材
1
异型窗口就是一些不规则的窗口,我们平时所见到的窗口如“画图”、word等,它们的窗口都是矩形的,然而,我们实际开发中,项目为了添加交互性和漂亮的UI来吸引用户,产品经理极有可能需要来做一些不规则的窗口。
blog:http://blog.csdn.net/longsir_area/article/details/23776425
2019/8/21 12:21:29 234KB 异形窗体 不规则窗体
1
基于multisim的篮球电子计时计分电路图,可完成篮球场上常见计时记分规则
2015/3/25 21:39:23 2.39MB multisim
1
利用区块链技术对养老保险关系“一键转移”业务进行改造,主要优化的地方在两个方面:1)潜在转移人员社保数据上链流程:参保人暂停缴费后(A市不做封存处理,不断为暂停状态),参保地根据业务规则判断参保人是否是潜在转移对象,对业务转移对象的养老保险数据进行上链。
2021/4/22 15:34:47 950KB DAPP
1
Docker撰写JUnit规则这是一个用于执行与DockerCompose托管容器进行交互的JUnit测试的库。
它支持以下内容:在测试之前启动在docker-compose.yml中定义的容器,然后将其拆除在运行测试之前等待服务可用记录容器中的日志文件以协助调试测试失败我为什么要用这个?此处的代码从对我们其中一种产品的端到端测试开始。
我们需要在互不兼容的各种不同配置和环境中测试该产品,因此需要多个DockerCompose文件,因此在Gradle中运行docker-composeup的简单模型不足。
如果您在使用Docker进行测试时遇到以下任何情况,则该库有望为您提供协助:编排多个服务并将端口映射到Docker计算机外部,以便可以在测试中进行断言需要知道服务何时启动,以防止由于启动速度慢或服务依赖关系复杂而导致的闪烁测试由于日志丢失,对在CI服务器上进行测试期间Docker容器中发生的事情缺乏了解由于在CI构建主机上需要打开端口而导致测试失败,该端口与测试配置冲突使用简单将依赖项添加到您的项目。
例如,在gradle中:repositor
2016/7/27 17:54:22 331KB docker docker-compose junit junit-rule
1
设计思想(1)程序主体结构部分:说明部分%%规则部分%%辅助程序部分(2)主体结构的说明在这里说明部分告诉我们使用的LETTER,DIGIT,IDENT(标识符,通常定义为字母开头的字母数字串)和STR(字符串常量,通常定义为双引号括起来的一串字符)是什么意思.这部分也可以包含一些初始化代码.例如用#include来使用标准的头文件和前向说明(forward,references).这些代码应该再标记"%{"和"%}"之间;规则部分>可以包括任何你想用来分析的代码;我们这里包括了忽略所有注释中字符的功能,传送ID名称和字符串常量内容到主调函数和main函数的功能.(3)实现原理程序中先判断这个句语句中每个单元为关键字、常数、运算符、界符,对与不同的单词符号给出不同编码方式的编码,用以区分之。
PL/0语言的EBNF表示::==;::=={|};::=+|-::=*|/::==|#|=::=a|b|…|X|Y|Z::=0|1|2|…|8|9三:设计过程1.关键字:void,main,if,then,break,int,Char,float,include,for,while,printfscanf并为小写。
2."+”;”-”;”*”;”/”;”:=“;”:”;”=“;”“;”=“;”(“;”)”;”;”;”#”为运算符。
3.其他标记如字符串,表示以字母开头的标识符。
4.空格符跳过。
5.各符号对应种别码关键字分别对应1-13运算符分别对应401-418,501-513。
字符串对应100常量对应200结束符#四:举例说明目标:实现对常量的判别代码:digit[0-9]letter[A-Za-z]other_char[!-@\[-~]id({letter}|[_])({letter}|{digit}|[_])*string{({letter}|{digit}|{other_char})+}int_num{digit}+%%[|\t|\n]+"auto"|"double"|"int"|"struct"|"break"|"else"|"long"|"switch"|"case"|"enum"|"register"|"typedef"|"char"|"extern"|"return"|"union"|"const"|"float"|"short"|"unsigned"|"continue"|"for"|"signed"|"void"|"default"|"goto"|"sizeof"|"do"|"if"|"static"|"while"|"main"{Upper(yytext,yyleng);printf("%s,NULL\n",yytext);}\"([!-~])*\"{printf("CONST_string,%s\n",yytext);}-?{int_num}[.]{int_num}?([E][+|-]?{int_num})?{printf("CONST_real,%s\n",yytext);}"0x"?{int_num}{printf("CONST_int,%s\n",yytext);}","|";"|"("|")"|"{"|"}"|"["|"]"|"->"|"."|"!"|"~"|"++"|"--"|"*"|"&"|"sizeof"|"/"|"%"|"+"|"-"|">"|"="|">="|"<<="|"&="|"^="|"|="|"="{printf("%s,NULL\n",yytext);}{id}{printf("ID,%s\n",yytext);}{digit}({letter})+{printf("error1:%s\n",yytext);}%%#includeUpper(char*s,intl){inti;for(i=0;i<l;i++){s[i]=toupper(s[i])
2021/11/7 5:50:07 105KB 词法分析器制作
1
共 858 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡