伪春菜,就是一个桌面的小程式,开发的目的就是能为主人们处理电脑大大小小的事情,包括报时、检查邮件、聊天、对时、检视CPU的使用度、关心主人的身体等等,而GHOST的种类应有尽有,每种GHOST的外貌及个性都不一样,不论是你想要罗莉型、大姊姊型、H型还是兄贵型(笑,任何你意想不到的GHOST应有尽有,还可以帮GHOST更换SHELL,让他的外型有不同的变换(性格上是不变的),有如此多魅力这就是伪春菜吸引人的地方。
16个中文人格+主程序人格安装的:是nar文件的直接拉到桌面的人物身上,自动安装。
是文件夹的,把文件夹复制到名为ghost的文件夹里面。
2023/10/4 18:53:19 6.16MB 伪春菜 中文人格
1
本论文主要阐述了中型企业的局域网建设问题,本着办公自动化和资源共享的原则将企业的一百台计算机组织成为一个小型的办公局域网。
本方案主要采用星形与树型相结合的混合型拓扑结构对网络进行构建,将本企业的一百台计算机分为五组,每组二十台,采用多台交换机将五组计算机连接起来组成内部局域网。
并使用拨号上网的方式进行网络连接。
2023/10/4 10:36:22 1.36MB 企业 局域网,办公自动化
1
NACA系列翼型数据库内有大量翼型资料可以输出
2023/10/4 0:38:49 123KB NACA 翼型 数据
1
给大家分享一个我写的用FPGA实现的实时连通区识别源代码。
具体介绍请看下文。
源代码附件里有,或者给我发邮件索取此算法的特点是:1)仅用一片低端FPGA即可实现,无需外接任何存储器。
用Xilinx的LX25就能装下,大概只用了十几个块RAM,其余的逻辑也不多。
2)实时性高,延时固定且很小。
由于该方法进行的是并行流水线处理,即对图像扫描一遍就可完成对所有连通区域的识别,因此识别每个连通区域的延时都是固定的,并不会因为图像中连通区域多,延时就增加。
该延时也很小,约扫描十几行图像的时间。
其实该算法用嵌入式cpu或dsp也可以实现,也可以做到消耗内存少,延时小。
3)能同时给出连通区域的各种统计信息。
该方法在识别出连通区域的同时还能给出该连通区域的面积、周长、外切矩形中心点坐标等统计信息。
还可以统计出该连通区内某特定颜色的点有多少个之类的信息。
4)可靠性高。
对一些特殊形状的连通区,例如U型W型等,都能识别并给出正确的统计信息。
2023/10/2 11:07:01 559KB 连通区识别
1
《现代整流器技术:有源功率因数校正技术》系统地介绍了功率因数校正电路的原理和应用技术。
书中详细介绍了单相功率因数校正电路原理及控制方法(包括CCM单相Boost型功率因数校正电路、CRM单相Boost型功率因数校正电路、交错并联功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制(重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。
此外,《现代整流器技术:有源功率因数校正技术》还介绍了软开关功率因数校正电路的原理,包括单相、三相有源箝位零电压开关功率因数校正电路。
  《现代整流器技术:有源功率因数校正技术》可作为电气工程与自动化专业、电子信息工程专业的高年级本科生、电气工程学科的研究生参考书,也可作为从事开关电源、变频器、UPS、工业电源等电力电子装置开发、设计工程技术人员的参考书
2023/10/2 2:25:26 13.68MB 有源功率因数
1
该文件为12bit的SAR型ADC的Multisim仿真原理图。
其中采用理想开关和电容阵列和比较器构成比较及维持电路。
2023/10/1 8:02:54 1.63MB Multisim 12bit ADC
1
数控机床课程设计说明书机械课程设计应用数控技术对C6163普通车床进行自动化和精密化改造,改造技术主要为:在车床上附加数控装置和执行元件,选择合适的机床伺服系统和计算机系统等。
结果表明:经改造后的机床完全能实现加工外圆、锥度、螺纹、端面等的自动控制,提高了原机床的生产效率,降低了劳动强度。
采用数控技术对企业原有机床进行改造,即发展经济型的数控机床是当前工矿企业机床技术改造的有效途径。
关键词;
C6163车床;
数控改造;
经济型
2023/9/30 6:14:04 617KB 数控机床课程设计说明书
1
最全的模电数电multisim仿真电路实例,只要1积分,包含1-5-1a二极管仿真电路.ms91-5-2稳压管仿真电路.ms91-5-3BJT仿真电路.ms91-5-4aMOSFET仿真电路.ms910-10-1a单相桥式整流电路.ms710-10-2a桥式整流电容滤波电路.ms710-10-3硅稳压管稳压电路.ms710-10-4串联型直流稳压电路.ms710-10-5a三端集成稳压器-a.ms710-10-5b三端集成稳压器-b.ms710_循环计数器.ms92-9-1a单管共射放大电路.ms92-9-1b单管共射放大电路直流通路.ms92-9-2工作点稳定电路.ms92-9-3a共集电极放大电路.ms92-9-4a共基极放大电路.ms92-9-5a共源极放大电路.ms93-5-1aRC高通电路.ms93-5-2aRC耦合单管共射放大电路.ms93D运算放大器应用.ms93D运算放大器应用.ms9(Securitycopy)4-5-1aOTL乙类互补对称电路.ms94-5-2aOTL甲乙类互补对称电路.ms94-5-3a复合管OCL甲乙类互补对称电路.ms94.ms9(Securitycopy)5-7-1长尾式差分放大电路.ms75-7-2恒流源式差分放大电路.ms75.ms9555Astable.ms9555Astable.ms9(Securitycopy)555单稳触发器.ms9555单稳触发器.ms9(Securitycopy)555振荡器(占空比可调).ms9555振荡器(占空比可调).ms9(Securitycopy)6-6-1电流串联负反馈电路.ms76-6-2电压并联负反馈电路.ms76-6-3电压串联负反馈电路.ms76.ms97-7-1a反相比例电路.ms77-7-1b同相比例电路.ms77-7-1c差分比例电路.ms77-7-2三运放数据放大器.ms77-7-3求和电路.ms77-7-4a积分电路.ms774LS194移位寄存器.ms974LS194移位寄存器.ms9(Securitycopy)74LS47译码器.ms974LS47译码器.ms9(Securitycopy)74LS90七进制计数电路.ms974LS90六十进制计数器.ms974LS90六十进制计数器.ms9(Securitycopy)74LS90六进制计数电路.ms974LS90十进制电路.ms974LS90测试电路.ms98-3-1a二阶低通滤波器.ms78-3-2a带通滤波器.ms78-3-3a单限比较器.ms78-3-4a滞回比较器.ms78-3-5a双限比较器.ms78-3-6a集成单限比较器.ms79-6-1aRC串并联网络振荡电路.ms79-6-2a矩形波发生电路.ms79-6-3三角波发生电路.ms7A-5-13aIV分析仪测二极管.ms7A-5-14aIV分析仪测BJT.ms7A-5-15aIV分析仪测FET.ms7A-5-7阻容耦合单管共射放大电路.ms7AC-DC变换器.ms9ADC实例.ms9ADC实例.ms9(Securitycopy)BTL功放.ms9BTL功放.ms9(Securitycopy)D触发器的研究.ms9IDAC测试电路.ms9J-K触发器的研究.ms9LIST.TXTOCL功放.ms9OCL功放.ms9(Securitycopy)OC门应用实验.ms9OC门应用实验.ms9(Securitycopy)OC门测试(74LS22).ms9R-S触发器的研究.ms9RC一阶电路.ms10RF放大器(频谱分析仪).ms9RF放大器(频谱分析仪).ms9(Securitycopy)RF放大器.ms9RF放大器.ms9(Securitycopy)RF放大器(网络分析仪).ms9RF放大器(网络分析仪).ms9(Securitycopy)VCVS.ms9VCVS.ms9(Securitycopy)VDAC原理图.ms9VDAC原理图.ms9(Securitycopy)三态R-S触发器(4043).ms9三态缓冲器测试.ms9三态缓冲器组合电路.ms9三态门应用.ms9三极管的开关特性研究(3D).ms9三极管的高频特性分析.ms9三端稳压源.ms9三角波发生器.ms9三角波发生器.ms9(Securitycopy)三通道总加器实验.ms9三通道总加器实验.ms9(Securitycopy)与非门搭接的逻辑电路.ms9与非门测试
2023/9/27 15:37:35 20.11MB multisim
1
MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQLAB公司。
目前MySQL被广泛地应用在Internet上的中小型网站中。
由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。
2023/9/26 9:11:34 1.55MB JSP MySQL
1
该模型基于PV模型、电导增量+积分调节器MPPT算法、基于L型滤波器的并网逆变器数学模型、基于电网电压矢量控制的三相光伏并网模型,大家可以交流学习
2023/9/26 2:14:08 341KB MPPT算法
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡