激光诱导击穿光谱已用于测量大气条件下粉煤无烟煤中的有机氧含量。
提出了特殊的光谱处理方法,包括通过与N(I)线比较光谱相关系数,选择与O(I)线的光谱相关系数,与N(I)线进行内部归一化以及温度校正来选择最佳的O(I)发射线,以满足多光谱分析线分析方法,可得出最精确的定量结果。
提出了确定煤中有机氧含量的标定方法,通过对六个无烟煤样品进行的实验评估,其精确度为1.15-1.37%,平均相对误差为19.39%。
还研究了相对测量误差分布。
2018/10/12 13:47:58 293KB laser-induced breakdown spectroscopy; LIBS;
1
一、使用Kettle从mysql向oracle中抽取数据的例子二、开源ETL工具kettle系列之常见问题三、开源ETL工具kettle系列之在使用程序中集成四、开源ETL工具kettle系列之增量更新设计五、开源ETL工具kettle系列之动态转换六、开源ETL工具kettle系列之建立缓慢增长维Kettle的并行、集群和分区一、多线程二、多线程的后果三、用Carte作为子服务器四、集群转换五、分区
2018/6/16 7:10:18 3.86MB kettle 常见问题
1
LR预设,胶片,小清爽等等。
332款六大类专业级超合集LIGHTROOM预设
2018/3/23 1:02:01 414KB .lrtemplate
1
本题要求是:1.设计制造一个可容纳六组参赛的数字式抢答器,每组设置一个抢答按钮供抢答者使用。
2.电路具有第一信号的鉴别和锁存功能。
3.设置记分电路.4.设置犯规电路.
1
长春理工大学软件质量保证与测试报告,包括功能测试,单元测试,自动化测试,版本控制实验,反编译,bug管理,超全
2020/8/23 13:23:32 158KB 软件测试 报告 长春理工
1
很了二天时间下载并整理代码格式,确认运行效果,最终将几个感觉还不错的打包,供亲们下载!优点:代码格式良好,经过测试可以运行,内容经典包含:坦克(超猛)、俄罗斯方块、贪吃蛇、打雷、三子棋等六6个,希望能给深入学习JavaScript的童鞋们带来协助
2015/1/25 11:45:08 25KB JS小游戏 JS坦克 JS贪吃蛇
1
在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;
2)带抖动视频;
3)静态背景下多摄像头对多目标提取;
4)出现异常事件视频的判断等问题。
给出了在不同情况下的前景目标提取方案。
问题一是针对静态背景且摄像头稳定的情况下,如何对前景目标提取的问题。
在题目要求的基础上,通过对附件2中几组视频的分析,我们发现所有前景目标的运动短暂且光线明暗变化不明显。
由于传统的Vibe算法能抑制鬼影但是运行效果不理想,因此采用建立在帧差法上改进的Vibe算法模型求解问题。
并和传统的Vibe算法做对比,结果显示改进的Vibe算法明显优于传统的算法。
而且对我们的算法模型做了效果评价。
详细数据参考正文与附录。
问题二是在背景为动态(如有水波的产生)的情况下,对前景目标的提取问题。
在此问题中,由于动态背景存在使得提取出的图像帧具有大量的干扰噪声,对前景目标的识别和提取造成干扰,因此我们提出一种基于全局外观一致型的运动目标检测法。
在用Vibe算法对场景预检测的基础上,建立混合高斯模型分别对前景和背景进行全局外观建模,将运动目标检测出来,再引入超像素去噪,进一步优化结果。
详细结果参考正文与附录。
问题三是在问题一、二基础上的进一步深化。
问题一及问题二是建立在摄像机自身稳定的基础上,而问题三则是在摄像机抖动的情况下。
由于摄像机抖动一般具有旋转和平移,因此我们建立了坐标变换模型,以仿射变换作为模型基础,结合改进的高精度鲁棒的RANSAC算法提取前景目标,并对比灰度投影法,比较两种模型效果。
具体效果见正文与附录。
问题四是对前三个问题的综合应用。
运用基于混合高斯模型背景建模Vibe算法,对前景目标进行提取;
选出具有显著前景目标的参考帧,计算参考帧中显著前景目标所占的面积,并将此面积设定为阈值T,遍历所有的视频帧,计算其前景目标所占的面积,通过相减对比,判定显著前景目标。
若判定为显著前景目标则输出其所在视频帧中的帧号,并将显著前景出现的总帧数增加1。
问题五是针对多摄像头多目标的协同跟踪问题。
在问题二的混合高斯模型基础上我们建立了动态背景提取法,对不断变化的背景进行实时更新。
再利用单应性约束法对多目标发生重叠现象进行投影将重叠目标区分开来,对目标进行定位。
由于目标的不断运动,我们采用粒子滤波法对前景目标进行实时跟踪,通过多摄像头的协同通信完成对多前景目标的检测。
问题六是针对监控视频中前景目标出现异常情况时判断能否有异常事件的问题。
在基于稀疏表示的模型上,引入混合高斯模型用于学习不同类型的运动特征规律,然后通过各个单高斯模型中的均值建立一个相似矩阵作为字典。
以测试阶段生成的核矢量为基础,用该局部特征的核矢量计算基于稀疏表示的重构误差,并将其与已设定的阈值进行比较,如果重构误差大于阈值,则判为异常。
2015/11/11 19:17:23 2.62MB MATLAB 目标提取 视频监控 Vibe算法
1
留意:一共要六个文件才能解压。
详情见https://blog.csdn.net/deweikaiwen/article/details/84791807
2017/3/27 9:12:01 200MB 封装库
1
本文档为通信原理复习文档,使用于保研复习基本概念及常见保研面试的问答知识点,参考书籍为张辉老师主编的《现代通信原理与技术》第四版,全文共38页,包含以下内容:一、绪论二、随机过程三、信道与噪声四、模仿调制系统五、数字基带传输系统六、模仿信号的数字传输七、数字频带传输系统
1
松下PLCFPXH六轴编程说明,主要引见松下PLC运动控制说明。
2019/10/24 12:51:57 750KB FPXH六轴编程
1
共 844 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡