配合博客教程:Android框架之路——聊天Demo完成
2023/2/1 22:08:36 24.83MB 聊天demo
1
libevent是一个基于事件触发的网络库,memcached底层也是使用libevent库。
总体来说,libevent有下面一些特点和优势:*事件驱动,高功能;
*轻量级,专注于网络;
*跨平台,支持Windows、Linux、MacOs等;
*支持多种I/O多路复用技术,epoll、poll、dev/poll、select和kqueue等;
*支持I/O,定时器和信号等事件;
libevent有下面几大部分组成:*事件管理包括各种IO(socket)、定时器、信号等事件,也是libevent应用最广的模块;
*缓存管理是指evbuffer功能;
*DNS是libevent提供的一个异步DNS查询功能;
*HTTP是libevent的一个轻量级http实现,包括服务器和客户端
2023/1/31 16:04:36 4.82MB libevent
1
60M左右的是2014破解版,常见的2009版本是30M左右,常用的光路计划工具
2023/1/28 8:55:57 64.11MB zemax 光学
1
经过鼠标点击来获取一个目的地,然后方块自动寻路并到达目的地,提供了Keylistener借口和Runnable接口,可进行相关扩展。
2023/1/27 22:28:17 13KB java 迷宫算法 自动寻路
1
把光纤Bragg光栅写入Sagnac环中间位置,1L和2L分别是光纤光栅Sagnac环两臂的长度,通过光纤耦合器构成一个环路。
光波从端口1进入,当两臂光程差为0时,反射光全部由端口2输出;
当两臂有较小光程差时,端口2的输出光具有窄带梳状光谱分布的特点,是遭到余弦调制的光栅反射谱,在光栅反射带宽内形成梳状滤波器,可以用来产生多波长光源
2023/1/17 5:41:25 774B saganc 多波长光源 臂长差 波长间隔
1
基于FPGA的双路可移相任意波形发生器,其中包括系统设计原理,正弦波、三角波、锯齿波的波形文件!能实现相位调理及其显示!
2023/1/16 22:09:41 1.62MB 正弦波 三角波 锯齿波
1
GCSolution操作步骤说明普通操作内容气相色谱的分析方法含两个方面的参数:分析参数和计算参数分析参数:是指期限色谱主机设定的参数,包括进样口的温度,载气流量、压力、分流比;
柱箱温度及温度程序;
检测器的温度、灵敏度、电流、采集速度及停止时间。
1.开机:连好流路,先开载气再开电源,开辅助气,设定流量、温度、检测器参数;
2.用默认处理参数进行样品分析;
根据图谱调整分析条件,再分析样品,直至得到理想谱图。
2023/1/15 6:04:19 327KB GCSolution简易操作
1
采用simulink自带的永磁同步电机模型做的一个单机无穷大系统,风速采用数学模型代替,发电机发出的电经整流斩波逆变电路后并网,验证了风电系统并网的可能性,也可以在其基础上进行毛病分析
2023/1/14 0:39:02 66KB 风电系统仿真
1
《ARCore之路-Untiy开发从入门到理论》前4章试读,最终版本可能略有差异。
2023/1/14 0:12:45 7.03MB ARCore
1
第一章1、异构网络互连的问题是什么?试举例说明。
举例来说,用户A可以通过接入使用以太网技术的校园网,与另外一个使用电话点对点拨号上网的用户B之间进行邮件通信,同时还和一个坐在时速300公里的高铁上的使用WCDMA手机进行3G上网的用户C进行QQ聊天。
但问题的关键在于,这些采用不同技术的异构网络之间存在着很大差异:它们的信道访问方式和数据传送方式不同,其帧格式和物理地址方式也各不相同。
2、请描述图1-2中,用户A和用户C进行QQ聊天似的数据转换和传输过程。
用户A的主机将发送的邮件数据先封装到IP数据包中,再封装到以太帧中,发送到其接入的以太网中,并到达路由器R1。
路由器R1从以太帧中提取IP数据包,根据目标IP地址选择合适的路径,再将其封装成SDH帧,转发到因特网主干网中,经过因特网主干网中若干路由器的选路和转发,到达路由器R3路由器R3从SDH帧中提取IP数据包,转换成WCDMA帧,发送到3G网络中,到达用户C的主机。
用户C的主机提取出IP数据包,最总交付到上层的邮件应用程序,显示给用户C。
4、画出TCP/IP模型和OSI模型之间的层次对应关系,并举例TCP/IP模型中各层次上的协议。
应用层:应用层对应OSI模型的上面三层。
应用层是用户和网络的接口,TCP/IP简化了OSI的会话层和表示层,将其融合到了应用层,使得通信的层次减少,提高通信的效率。
应用层包含了一些常用的、基于传输层的网络应用协议,如Telnet、DNS、DHCP、FTP、SMTP、POP3、HTTP、SNMP、RIP、BGP等。
传输层:传输层位于IP层之上,为两台主机上的应用程序提供端到端的通信服务。
目前,应用最广泛的传输层协议是TCP和UDP。
网络层:网络层又称为网际层、互联网层或IP层,是TCP/IP模型的关键部分。
该层主要完成IP数据包的封装、传输、选路和转发,使其尽可能到达目的主机。
该层包括的协议主要有IP、ARP、RARP、ICMP和IGMP,其中,IP协议是网络层的核心。
网络接口层:网络接口层对应OSI模型中的物理层和数据链路层,只要底层网络技术和标准支持数据帧的发送和接收,就可以作为TCP/IP的网络接口,包括前面提到的各种局域网、城域网、广域网技术,如以太网、电话拨号、3G网络等。
......
2023/1/13 21:50:30 44.23MB 杭电研一 徐明 高级计算机 网络
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡