Kalman滤波器理论与应用:基于MATLAB实现》以Kalman滤波器为主要介绍对象,包含基本原理、推导方法及其在跟踪系统中的应用,同时配套MATLAB源程序。
具体内容包括Kalman滤波器、扩展Kalman滤波器、不敏Kalman滤波器及其在RFID系统的跟踪应用研究。
  《Kalman滤波器理论与应用:基于MATLAB实现》凝练了作者二十余年来对Kalman滤波器基础理论及在目标跟踪应用的研究成果,具体内容包括:根据目标运动特征进行自调整参数的“自适应动力学模型”、不敏变换的性能分析、RFID跟踪系统的测量方程及其仿真平台等。
  《Kalman滤波器理论与应用:基于MATLAB实现》可作为自动化、电子信息、计算机应用、控制科学与工程、信号处理、导航与制导等相关专业高年级本科生和研究生的教材,也可供相关领域的工程技术人员和研究人员参考。
2024/7/31 3:40:46 3.98MB Kalman滤波器 MATLAB实现 卡尔曼滤波
1
再谈球绑定:AWGN信道上二进制线性码性能评估的新仿真方法
2024/7/30 12:35:41 115KB 研究论文
1
DB2方面的资料,有很多的精品文章,包括purescale的安装配置及常见问题解决、性能调优、故障诊断、高可用性、锁和并发等等方面的文章。
2024/7/30 11:05:36 2.53MB purescale 性能调优 故障诊断 高可用性
1
近几年,我国工业生产水平稳健提高,企业的中高端制造能力快速提升,效益持续改善。
但是,单位工业效能与发达国家仍然存在较大差距,宏观上主要表现在整体资源利用率较低,企业间生产协同不密切,产业链上下游灵活性不足、响应不及时(导致某些行业的过剩产能已经成为国家亟待解决的问题),以及产品性能品质整体偏低等问题
2024/7/30 7:46:29 2.56MB DAPP
1
Nginx是一款面向性能设计的HTTP服务器,相较于Apache、lighttpd具有占有内存少,稳定性高等优势
2024/7/29 4:18:30 1.62MB 负载均衡器
1
具有非亚波长光栅周期的双层导模谐振滤波器在斜入射下的性能
2024/7/28 11:01:49 3.25MB 研究论文
1
分析了熔体提拉法生长Ho∶Tm∶YLF晶体过程中熔体表面漂浮物的产生原因,以及晶体中散射颗粒、孪晶和开裂的成因。
通过精心设计对称性温场,并调整温场、优化生长工艺参数,有效消除了晶体中的散射颗粒,克服了晶体开裂。
采取在生长气氛中加入一定量CF4等工艺措施有效减少了熔体表面上的氟氧化物漂浮物,克服了漂浮物对生长晶体的影响,生长出了尺寸为(25~30)mm×(100~120)mm的高品质HoTmYLF晶体。
HoTmYLF晶体激光性能测试表明,在LD双端抽运条件下获得了超过10W的2.05μm激光输出,激光斜率效率达到41.2%,光光转换效率达到36.4%。
2024/7/28 8:05:22 1.55MB 材料 激光晶体 HoTmYLF晶 晶体生长
1
新词发现作为自然语言处理领域的一项基础研究,一直受到学术界和企业界的广泛关注。
将新词发现问题转换为确定词语边界问题。
首先对语料进行中文分词,然后统计"散串",最后提出一种基于词内部结合度和边界自由度的新词发现方法。
通过在大规模语料上进行新词发现实验,验证了该方法的有效性。
今后的研究重点将放在如何有效地识别低频新词上,以提高系统的整体性能。
1
石墨烯具有特殊的二维柔性结构,可调控费米能级特性和优异的光学、电学性能。
利用有限元法,对覆石墨烯微纳光纤光场调控进行理论分析,通过改变石墨烯与缓冲层结构覆微纳光纤的角度,破坏光纤的对称性结构,使光纤具有双折射特性,双折射度大小与石墨烯覆盖角度有关;
通过外加电压的方法改变石墨烯的化学势,可对光纤进行开关调控,由此设计出一种包覆石墨烯的微纳光纤电吸收型调制器并进行性能分析。
通过数值分析可发现当覆盖光纤角度为270°时,1550nm处双折射度可达1.23×10-3;
电吸收调制器工作在1550nm时,器件长度为18μm,消光比为7dB,3dB带宽可达到927MHz,插入损耗为0.58dB
2024/7/26 21:24:07 6.02MB 物理光学 双折射 微纳光纤 电光调控
1
采用SpringBoot+Vue前端端分离的的方式进行二手书的设计前端主要使用:Vue+ElementUi,以Nginx作为服务器性能优化:上传图片压缩,前端代码gzip压缩,ElementUI按需使用,Vue模块按需加载,CDN引用文件加速。
后端:使用SpringBoot+Mybatis(内含数据库文件)
2024/7/26 9:06:17 64.59MB SpringBoot Vue 前后端分离 ElementUi
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡