5口百兆交换机原理图,RTL8305NB原理图RTL8305NB原理图
2025/2/13 5:04:12 745KB RTL8305NB 原理图
1
STM32F103C8T6最小系统原理图文件,包括电源电路、单片机等11111111111111111111
2025/2/13 2:33:34 227KB STM32 C8T6 原理图
1
为提高基于渐开线原理的快速光学延迟线(FODL)装置的扫描频率和延迟时间,提出一种具有高速及高稳定性特点的光学延迟线装置,分析了延迟线装置装配误差引起的出射光束角度偏转和光程差变化。
通过迈克耳孙干涉系统验证装置的扫描频率、延迟时间、延迟平稳性和延迟线性度四个方面的特性。
实验结果表明,延迟线装置的装配精度较高,可实现高速高稳定性扫描和较大的光学延迟,其扫描频率为100Hz,延迟时间为167.45ps,延迟距离为50.06mm,平稳性误差为0.25%,线性度误差为0.05%。
2025/2/12 22:46:03 9.17MB 测量 光学延迟 装配误差 渐开线
1
樊昌信的通信原理,不错的书,配有第三、四、五、六、八、九、十章习题答案
2025/2/12 17:05:39 13.29MB 通信原理 樊昌信 第五版 习题答案
1
关于渲染,有很多方式。
大致有三类:基于物理学的渲染(Physicallybased):着力于模拟现实。
就是说,用物理学的原理搭建关于光和物质交互的模型,追求真实感是该类方法的首要任务。
交互式渲染(Interactive):为了高性能和低延迟而牺牲真实感的渲染。
非真实感的渲染(Nonphotorealistc)。
这是为艺术的自由表达而作的渲染。
该书所描述的pbrt是基于光线追踪算法的物理学渲染系统。
其它相关的书籍只是介绍原理,算法,或许还夹杂些少许源代码。
该书则不同,因为它带了一个完全能工作的完备的渲染系统。
(正是这个原因,有很多人用这个系统为蓝本作研究,甚至有LexRender这样相当高级的系统出现)。
2025/2/11 11:49:06 25.25MB 图形学
1
计算机统考操作系统计算机组成原理计算机网络数据结构
1
递归下降分析法一、实验目的:根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。
本次实验的目的主要是加深对递归下降分析法的理解。
二、实验说明1、递归下降分析法的功能词法分析器的功能是利用函数之间的递归调用模拟语法树自上而下的构造过程。
2、递归下降分析法的前提改造文法:消除二义性、消除左递归、提取左因子,判断是否为LL(1)文法,3、递归下降分析法实验设计思想及算法为G的每个非终结符号U构造一个递归过程,不妨命名为U。
U的产生式的右边指出这个过程的代码结构:(1)若是终结符号,则和向前看符号对照,若匹配则向前进一个符号;
否则出错。
(2)若是非终结符号,则调用与此非终结符对应的过程。
当A的右部有多个产生式时,可用选择结构实现。
三、实验要求(一)准备:1.阅读课本有关章节,2.考虑好设计方案;
3.设计出模块结构、测试数据,初步编制好程序。
(二)上课上机:将源代码拷贝到机上调试,发现错误,再修改完善。
第二次上机调试通过。
(三)程序要求:程序输入/输出示例:对下列文法,用递归下降分析法对任意输入的符号串进行分析:(1)E->eBaA(2)A->a|bAcB(3)B->dEd|aC(4)C->e|dc输出的格式如下:(1)递归下降分析程序,编制人:姓名,学号,班级(2)输入一以#结束的符号串:在此位置输入符号串例如:eadeaa#(3)输出结果:eadeaa#为合法符号串注意:1.如果遇到错误的表达式,应输出错误提示信息(该信息越详细越好);
2.对学有余力的同学,可以详细的输出推导的过程,即详细列出每一步使用的产生式。
(四)程序思路0.定义部分:定义常量、变量、数据结构。
1.初始化:从文件将输入符号串输入到字符缓冲区中。
2.利用递归下降分析法分析,对每个非终结符编写函数,在主函数中调用文法开始符号的函数。
2025/2/10 19:45:51 39KB 编译原理 语法 递归下降
1
计算机组成原理前五套本科自测题答案选择题答案更新.doc
2025/2/10 13:02:05 53KB ebook
1
OpenGLES学习教程(十七)UnityGPUInstance原理及GLES实现(一)
2025/2/10 11:07:12 13.01MB opengles
1
CC2530原理图元件库,AltiumDesigner中找不到CC2530芯片原理图和对应的PCB小伙伴可以下载哈
2025/2/10 11:34:37 9KB CC2530
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡