数据挖掘实验报告、基于R言语实现,包括数据、算法描述、代码、实验分析、软件Rstudio等内容,分类算法包括随机森林、Adaboosting、K近邻、神经网络、支持向量机、朴素贝叶斯等,聚类算法包括K-Means聚类、层次聚类、SOM网络聚类和关联规则。
2018/3/2 5:45:02 92.32MB Rprogram datamining
1
数据挖掘实验报告、基于R言语实现,包括数据、算法描述、代码、实验分析、软件Rstudio等内容,分类算法包括随机森林、Adaboosting、K近邻、神经网络、支持向量机、朴素贝叶斯等,聚类算法包括K-Means聚类、层次聚类、SOM网络聚类和关联规则。
2018/3/2 5:45:02 92.32MB Rprogram datamining
1
中国科学技术大学汪增福模式识别课程课件。
第一章为绪论。
第二章引见统计模式识别中的几何方法,着重引见特征空间的概念和相关分类器的设计方法。
第三章引见统计模式识别中的概率方法,着重引见最小错误概率分类器、最小风险分类器、纽曼皮尔逊分类器和最小最大分类器以及概率密度函数的参数估计和非参数估计等。
第四章讨论典型分类器错误概率的计算问题。
第五章讨论无监督情况下的模式识别问题,着重引见几种典型的聚类算法:基于分裂的聚类方法、基于合并的聚类方法、动态聚类方法、基于核函数的聚类方法和近邻函数值聚类方法等。
第六章讨论结构模式识别问题,给出几种典型的文法规则和与之相关联的识别装置,包括有限状态自动机、下推自动机和图灵机等。
最后,在第七章对全书进行总结。
2021/11/8 11:51:08 25.28MB 中科大 汪增福 模式识别课件
1
PARZEN窗和K近邻算法的python实现。
现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。
很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些协助。
根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
2018/4/1 16:42:07 5KB PARZEN K近邻 无监督参数估计
1
遗传算法是一种比较成熟的智能算法,一般通过改进遗传算法的算子达到提高算法功能的目的。
提出一种改进的遗传算法,遗传算子是基于近邻选择策略设计的,另外还对评估函数、种群多样性以及保留精英算子等方面对遗传算法进行了改进,并将其应用到旅行商问题的求解上,实验结果表明提出的算法是有效的。
2015/1/5 14:43:51 649KB 论文研究
1
本来代码是关于LPP算法的matlab编程,流形算法的次要思想是能够学习高维空间中样本的局部邻域结构,并寻找一种子空间能够保留这种流行结构,使得样本在投影到低维空间后,得到比较好的局部近邻关系。
2020/5/16 14:32:37 9KB LPP matlab
1
用Matlab实现了KNN算法中最近邻元素的查找,算出的结果与Spss完全分歧
2015/7/22 2:42:03 9KB KNN Matlab
1
基于matlab,读取图像文件并,并计算其图像对比度。
计算公式采用:各中心像素灰度值与四周8近邻像素灰度值之差的平方之和再除以差的个数。
注:直接运行,选取路径即可输出计算结果,十分方便。
适用于大量图片待计算时使用
2016/5/2 2:48:32 647B matlab 图像对比度
1
一种基于CNN模型多元时间序列分类结构,佘强,李静林,多元时间序列分类问题是时间序列挖掘领域中的重要问题,目前的常规做法是使用基于欧氏距离或DTW距离的K近邻分类模型,或基于统计
2018/1/19 1:44:49 481KB 计算机应用技术
1
基于用户最近邻模型的协同过滤算法的Python代码实现,用户类似度用Pearson相关系数进行计算。
2021/2/6 12:54:55 7KB Python 协同过滤 皮尔逊相关性
1
共 78 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡